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ABSTRACT

The paper presents an empirical application of Extreme
Value Theory (EVT) in modeling extreme behavior of
financial asset prices. EVT is a branch of statistics dealing
with the extreme deviations from the mean of probability
distributions. It is the theory behind modeling the
maxima of a random variable. Market risk takes extreme
form when certain events, which are assumed to be rare
in the distribution of assets, cause severe changes in the
valuation of the portfolio. These rare events usually lie
in the tails of the return distribution of the assets. We
model two different risk measures with three different
return distributions and analyze the importance of
extreme value distributions in underscoring the behavior
of extreme market moves. The paper highlights that the
high volatility of Indian stock market associated with
higher returns is better captured through extreme value
distributions rather than conventional distributions.
Also, for all the stock indices, EVT help in modeling the
market risk better than conventional distributions.

Key Words: Market risk, Extreme Value Theory (EVT),
enhanced risk measures, extreme value distributions

JEL Classification: C12, C13, C15, C19, G11

1. Introduction

Research in recent times, especially in the latter half of
20th century, dealt with the determination of an explicit
trade-off between risk and returns. While there is almost
no disagreement on the definition and specification about
returns ascribed to an asset, researchers do disagree with
the notion of risk. While the specific definition of risk
is very important when used as the stochastic discount
factors for asset pricing, it is equally important to estimate

an aggregate measure of risk in portfolio of asset for
determination of risk capital.

Market risk is the risk faced by a portfolio of assets due
to change in market moves or market wide risk factors.
Market risk takes extreme form when certain events,
which are assumed to be rare in the distribution of
assets, cause severe changes in the valuation of the

portfolio. These rare events usually lie on the tails of
the return distribution of the assets. These rare events
may therefore, cause a large gain or a large loss to the
value of the portfolio. As an average investor is concerned
with the extreme losses rather than large gains, we are
also concerned with the loss severity or the downside
risk of the portfolio.

The conventional analysis of risk return trade-off starts
with the objective quantification of risk by Markowitz
(1952). This was the first instance to determine a
mathematical formulation of risk-return trade-off in the
form of efficient frontier. In his analysis, Markowitz was

able to demonstrate the diversification of asset portfolio
through multivariate distribution of returns using
Pearson's correlation coefficient. While the work was
inherently seminal in its own context, recent extreme
events in the market led us to relook the assumptions
underlying the Markowitz framework. The analysis

relied on elliptically distributed asset classes, where
Pearson's correlation is a well behaved concordance
metric [1]. The elliptically distributed random variable
is one for which the density can always be presented
as a nondegenerate variance mixture of (at least two)
normal densities (Owen and Rabinovitch, 1983). If we

happen to look into the return distributions for most of
the assets in extreme market moves, we may find strong
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disagreement with the assumption of elliptical

distributions. These distributions tend to show skewed

and leptokurtic patterns. Under these conditions a

Pearson's correlation of zero does not signify the

independence of asset returns.

The above background laid the foundation and

motivation for this work. Emerging markets such as

India entails higher volatility associated with higher

returns. Capturing market risk in these markets

effectively would therefore have larger implications for

global investors to diversify their risk through

quantifiable exposures in these markets. In this paper

we analyze risk in more than one dimension using VaR

and Expected Shortfall as alternative risk measures. We

then applied these risk measures to different kinds of

asset distributions to see the utility and fit of these

measures for different asset classes in the form of real

time financial time series of Indian and global stock

indices. The exercise thus helps us to compare the

performance of various risk measures and return

distributions with respect to chosen stock indices.

Section 2 gives a theoretical background regarding

definitions of various risk measures and concept of

extreme value distributions. These aspects necessarily

deal with properties of risk measures, Extreme Value

Theory (EVT) and its use in extreme distributions.

Although, the theoretical description of risk measures

and EVT would be dealt with in details in advanced

texts on Risk and their properties, this is included here

to make definitions of these measures consistent as used

for the empirical analysis in later sections. An avid

practitioner can skip this section entirely. In section 3

we reviewed some key works related to the paper.

Section 4 reveals the data and methodology for the

empirical analysis. In this section we intend to show

how modeling of Value-at-Risk (VaR) and Expected

Shortfall (ES), as alternative risk measures to the variance,

are modeled for a set of asset returns consisting of actual

financial time series using three different return

distributions. Section 5 discusses the results and

implications. Section 6 provides the concluding remarks
with some limitations.

2. Theoretical Background

2.1. Extreme Value Theory (EVT)- Generalized Extreme
Value (GEV) distributions and Generalized Pareto
Distributions (GPD)

EVT is the theory behind modeling the maxima of a
random variable. It is a branch of statistics dealing with
the extreme deviations from the mean of probability
distributions. Extreme value theory is important for
assessing risk for highly unusual events. Let Xn be the
realization for any random process W in period n, with
specified maximas for any set of non-overlapping periods
of fixed intervals. We therefore, are interested in
modeling the distributions of  Mn  = max{X1,X2…..Xn} .
This can be done by observing the maxima in two ways.
First is the Block Maxima Method and second is the Peak
Over Threshold method (POT).  Under the former, we
consider the maximum value of variables in successive
non-overlapping periods and determine the
distributions of these maximas. In the latter, however,
we specify a threshold and define maxima as the value
of random variable exceeding this threshold. The
distribution of these maximas follows Generalized
Extreme Value (GEV) distributions. Using the
fundamental theorem of Fisher & Tipper (1928) and
Gnedenko (1943), Jenkinson (1955) has been cited to show
the formulation of GEV distributions. The limiting case
of maxima, Mn = F(μ ,  σ ,  ξ) is given by:

............................. (1)

for 1 + ξ (x – μ) / σ > 0, where μ  R is the location
parameter, σ > 0 the scale parameter and ξ   R,  the shape
parameter.

Fisher-Tipper type I, II and III distributions are said to
be obtained respectively for ξ  = 0, ξ  < 0, and ξ  > 0.
Depending on the range of the parameters these
distributions are called Frechet, Weibull and Gumbel
distributions. Maximum domain of attraction (MDA) is
the concept from seminal work of Fisher & Tipper,(1928).
McNeil (1996) discussed MDA in detail. Under the
concept of MDA, if we know that suitably normalized
maxima converge in distribution, then the limit
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distribution must be an extreme value distribution for
some value of the parameters μ, σ, and ξ . Using MDA
different sub-class of distributions are classified, such
as Pareto, Burr, normal, exponential etc.

Under POT method of estimating the maxima a threshold
value, u, has been considered and the excess distribution
function Fu of the values of random variable exceeding
u has to be obtained. For an asymptotic case where
u →∞, under conditions of MDA, Fu assumes the form
of Generalized Pareto Distributions (GPD), which is
expressed as (Pickands, 1975; Balkema & de Hann, 1974):

.......................... (2)

For x > μ, and  x < μ – σ / ξ  when ξ  < 0 , where μ is the
location parameter, σ the scale parameter and  ξ  the
shape parameter.

The tail index, ξ , reflects the heaviness of tails while the
scale, σ parameter reflects the dispersion of the
distribution around the mean. The higher the ξ , heavier
is the tail. Different values of these parameters results
in different forms of GPD like Pareto (ξ  > 0), Uniform
(ξ  = 1), Exponential (ξ  =0). To estimate these parameters
two general methodologies used are (i) semi-parametric
method based on Hill type estimators (Hill 1975) and,
(ii) Parametric methods based on specific GPDs to be
used. Danielsson and de Vries (1997) use semi-parametric
approach based on Hill estimator for estimating the tail
index.

Hosking & Wallis (1987) gave a detailed analysis on the
parameter estimation of GPD. For given random sample
X1, X2. . . Xn of a population X from the GPD, the Maximum
Likelihood Estimators (MLEs) of the parameters (σ ,  ξ)
have been discussed by them. The Moment Estimators
(MEs) of the parameters are given by:

, and .......... (3)

where X  and s2 are the sample mean and the sample
variance respectively.

The probability-weighted moment (PWM) estimators of
the parameters for the GPD:

 and ................. (4)

where,  with Xi being the ith order

statistic.

The traditional methods of estimating parameters for
GPD are found to be difficult to estimate. Since
Maximum Likelihood estimation (MLE) is
computationally difficult, approximations given by ME
estimators are often used. Davison (1984), Smith (1985),
Hosking & Wallis (1987) and  Grimshaw (1993) discussed
the problems in these estimations.

2.2. Risk measures and their properties

Many applications in quantitative finance need the risk
in a portfolio of assets to be quantified. This quantification
generally is expressed as risk exposure. Among the set
of models to estimate the risk exposure, Value-at-risk
(VaR) is the one which is widely used. VaR is
mathematically expressed as:

VaRα = inf{l  R : p(L>l)< 1 – α} =
inf{l  FL(l) >  α} ............................................................... (5)

This can be interpeted for a confidence level α, the
smallest number l such that the probability that the loss
L exceeds l is not larger than (1 – α). Or VaR as the lowest
value of the random variable X , denoting the portfolio
returns, that can be achieved with a confidence α.  In
other words VaR is the α-quantile of the generalised
inverse of distribution F(X) of the portfolio returns. VaR
has been used extensively in financial applications due
to its intuitive appeal, easy implementation and
straightforward applicability.

Three general methods to calculate VaR are (i) empirical
estimation on historical returns, (ii) using parametric
estimation of distribution functions and (iii) Monte carlo
simulations. Some specific VaR calculations techniques
are :
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1. Delta-normal model (Garbade, 1986),

2. Delta GARCH model (Hseih, 1993),

3. Delta weighted normal model (Morgan, 1994),

4. Gamma normal model (Wilson, 1994).

Researchers have cited several problems in using VaR
as a risk metric. VaR is not a coherent risk measure (not
even a weak coherent measure). Thus it is difficult to
get single estimate for VaR using different methods for
the same portfolio returns. VaR lacks the sub-additivity
property (discussed below), where it goes against the
tenets of portfolio diversification. It is not a convex
function of risk, which causes computational issues in
optimization problems, when used as a constraint.
Winker & Maringer (2004) have attempted to optimize
a portfolio using VaR through the use of mathematically
sophisticated Memetic search algorithms.

VaR seems to penalize gains and losses in the same way
and is also inappropriate for rare events. It is also
inconsistent with the utility function approach except
when assets have Gaussian distribution or when
quadratic utility is assumed. Thus it is unsuitable for
modeling risk in case of non-elliptical distributions.

2.2.1. Coherence of risk

To see the coherence of risk measures, let ρ be the risk
measure, defined as the amount invested prudently today
to bear an expected loss of X in future. Artzner et al.
(1999), defined the following axioms for a coherent
measure of risk given the mapping
(ρ : X → R) :

a. Translation invariance, i.e., ρ(x + r) = ρ(x) – a for all
random variables x, real number 'a' and riskless rate rf;

b. Sub-additivity, i.e., ρ(x + y) < ρ(x) + ρ(y) for all
random variables x and y;

c. Positive homogeneity, i.e., ρ(λx) = ρ(λx)  for all random
variables x and positive real numbers λ and,

d. Monotonicity, i.e., x < y ⇒ ρ(x) < ρ(y) for all random
variables x and y.

It can be noted again that VaR does not obey the
sub-additivity property.

2.2.2. Different risk measures

a. Conditional value at risk (CVaR)

CVaR is defined as the expected value of losses exceeding
VaR. Mathematically,

CVaR(X) = VaR(X) + E[X – VaR (X) | X > VaR (X)]...(6)

CVaR is a coherent measure having all the properties
of a coherent risk measure.

b. Expected Shortfall (ES)

For an integrable loss distribution F(X) satisfying,

ES is defined as the conditional expectation of the random
variable X, such that X > VaR X. Mathematically, ES (X)
=

E[X | X > VaR(X) + E[X – VaR(X)| X > VaR(X)…..(7)

The condition of sub-additivity holds for ES and it is
a coherent risk measure.

c. Expected regret (ER)

ER is very similar to CVaR, where it is defined as the
expected value of loss distribution given it exceeds a
threshold, β. Mathematically,

………..……………….(8)

Where, p(y) is the probability density function of the
loss distribution.

d. Tail mean (TM)

TM is defined as:

…….(9)

Where, IX<x(α) is the indicator function defined such that
IX<x(α) = 1 if X < x(α)  and 0 otherwise and α is the confidence
level.
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3. Literature Review

3.1. Extreme Value Theory (EVT) -  Generalized
Extreme Value (GEV) distributions and Generalized
Pareto Distributions (GPD)

The evidence as given by Fama (1976) generally suggests
that the distribution of daily returns is heavy-tailed
distributions relative to normal. Mandelbrot (1966) was
among the first ones to acknowledge the heavy tails and
excess peakedness underlying the real time financial
assets. The concept in fact was earlier proposed by
Jenkinson (1955) in terms of introducing Generalized
Extreme Value (GEV) distributions. This led to the path
breaking venture into the field of Extreme Value Theory
(EVT). Researchers since 1990s were constantly seeking
answers to some real time risk phenomenon using the
realm of EVT. EVT in recent times proved to be
instrumental in statistically modeling rare events which
are of considerable importance for aggregation of risk
in a portfolio. EVT has been extensively used nowadays
to compute point estimates and confidence intervals for
tail risk measures in a financial optimization problem.
Embrechts et al. (1997) showed that EVT specially focuses
on behavior of tail dependence for set of asset returns
and used for modeling the maxima of a random variable.
Other distributions such as Stable Paretian distributions
are also modeled to deal with heavy tails; here these
distributions, however, deal with complete distributions
and not only the tails. A wide description of Stable
Paretian distributions for financial assets has been given
in Rachev and Mittnik,(2000). Beirlant & Teugels (1992),
Embrechts & Kluppelberg (1993), gave a mathematical
treatment about insurance mathematics in EVT and its
applications.

On the application front EVT finds wide utility. Neftci
(2000) compared VaR based on Normal and extreme
value distribution assumptions using historical bond
prices and foreign exchange rates. Da Silva and Vaz de
Melo Mendez (2003) computed VaR estimates using EVT
to analyze ten Asian stock markets. Gilli and Këllezi
(2003) also advocate EVT, Block Maxima and Peak Over
Threshold (POT) to compute tail risk measures: VaR and
ES. These methods to identify the maxima for GEV
distributions are discussed later in the paper. Embrechts

et al. (1997) modeled rare events in insurance and other

quantitative finance aspects using EVT. Longin (2000)

in his paper showed the implementation of EVT for

estimating VaR of a portfolio. Extending the concept of

EVT to the insurance industry, McNeil (1996) used the

Danish insurance data to highlight the relevance of

Generalized Pareto Distributions (GPD), which is a sub-

class of GEV, for EVT. He also dealt with the parameter

estimation and curve fitting for modeling rare historical

losses in non-insurance sector. He also dealt with the

concept of loss severity and showed how to model the

aggregate payments depending on the number of losses.

He employed the method of Maximum Likelihood

Estimation (MLE) as well as Probability Weighted

Method (PWM) of moments for parameter estimation

and data fitting and found that GPD is the best fit

distribution for extreme values.

A crucial aspect in modeling with GPD is the parameter

estimation and curve fitting. Jenkinson (1955) and Prescott

& Walden (1980), dealt with the estimation of GEV

parameters. They used Maximum Likelihood Estimation

(MLE) and sextile estimation methods for estimating

parameters for GEV distributions. There are three

functional forms for estimating GPD parameters.

Maximum Likelihood Estimators (MLE), Probability

Weighted Method (PWM) and moment estimators (ME).

The Maximum Likelihood Estimators (MLEs) of the

parameters have been discussed by Davison (1984), Smith

(1985), Hosking & Wallis (1987) and Zhang(2007).

Grimshaw (1993) gave a detailed algorithm for

computing the MLEs for some restrained set. Hosking

& Wallis (1987) also discussed an approximation in

terms of the moment estimators (MEs) of the parameters.

They also discussed the PWM estimation in the same

paper.

3.2. Risk measures

Disagreement among researchers for appropriate risk

measure in portfolio optimization led to proper

definition of essential properties of risk measures.

Artzner et al. (1999) in his seminal work has worked for

defining the axioms of a coherent risk measure. VaR
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generally does not possess the sub-additivity property,
which goes against the tenet of portfolio optimization.
Different risk measure and their properties have been
dealt with by some researchers1. Zokivic (2008) dealt
with CVaR and properties of other risk measures. In
emerging market context, Darbha (2001) investigated the
value-at-risk for fixed income portfolios in India, and
compared alternative models including variance-
covariance method, historical simulation method and
extreme value method without making distribution
assumptions for entire return processes. Also Lima and
Neri (2007) investigated the VaR methodologies for
Brazillian market.

The problem of optimization of a portfolio with different
risk metrics for elliptically distributed assets is dealt in
Giorgi (2002). He showed that mean-VaR and mean-ES
optimization are subsets of mean-variance efficient
frontier. Rockafellar & Uryasev (2002) discussed this
comparison for multivariate Gaussian distributions. The
formal definition and properties of the two risk measures
have been discussed in section 2 above.

4. Data and Methodology

In the following empirical analysis we have modeled
different return distribution against different risk
measures such as VAR and ES. We chose historical
estimation (empirical distribution), Gaussian
distribution and Generalized Pareto Distribution using
Peak Over Threshold (POT) method to estimate VAR
and ES of real time financial asset returns. Our data set
consists of financial time series of four stock market
indices viz SENSEX, CNX NIFTY, S&P 500 and FTSE
100.

We chose daily returns for these time series for the
period starting from January 1995 to December 2009. The
period was chosen such that to capture broad market
movements after structural changes have been
introduced in Indian economy in early 1990s. Further
the tail of the data set captured the period of extreme
market movements owing to recent global meltdown of
2007-09. In all we have sample points data for 3692
observations during this period.

We estimated the VAR and ES for the different return

distribution sequentially starting from empirical

distribution. Microsoft Excel and SPSS 16.0 were used

for analyzing the data.

a. Empirical distribution:

Let Fn denote the empirical process of the observed

losses X1, …, Xn,.

This is given by

……..(10)

where l(.) is the indicator function, and Xi is i.i.d. with
(unknown) distribution F.

Let Xn(1) < Xn(2) < … < Xn(n) is the order statistics, then the

VaRα(X) or α quantile F–1(α) can be estimated by (Van

Der Vaart, 1998) :

…………(11)

In effect we calculate the α percentile of the return

distribution for given data points.

Similarly, ES is given by,

ES = E(x | x >VAR(X))  …………..(12)

In effect, assuming i.i.d returns ES is the average of loss
data points exceeding VAR.

b. Gaussian Distribution

Let Xi, i=1,…,n, be i.i.d., with normal distribution X~N(μ,
σ2) with unknown μ and σ. Then VaR at α confidence
level is simply given by zα σ, where zα is such that P(Z
> zα)= α, with Z ~ N (0,1). Where σ, the standard deviation
can completely define VAR for a given confidence level.
This means that for a given confidence, say 95%, the VaR
is simply 1.645σ and for 99% CI VaR is 2.33σ.

Similarly ES is given by Eq (12) above,

Where, zα = Φ–1(α) represents the α quantile of the
standard Normal distribution, Φ is the cumulative
distribution function (cdf) of the standard Normal
distribution. ES can be approximated once the value of
VAR is known. For 95% CI, the ES is approximately
2.06σ and for 99% CI, ES= 2.67σ. We have used these
approximations here.
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c. EVT approach - GPD distribution

Earlier we have seen that to estimate maxima of a random

variable we can use either the block maxima method

(BMM) or the peak over threshold (POT) method. BMM

uses the value of maxima in successive non-overlapping

intervals, while a threshold is to be defined in case of

POT. The random variable which is greater than the

threshold is under consideration. The distribution

function of these maxima constitutes the GPD which is

given above in Eq (2). For such a GPD, VAR and ES are

given by, (Lee, 2009).

………….(13)

……………………..(14)

Where, p = confidence level=1-q; σ = scale parameter;

μ = mean, u =threshold ξ  = shape parameter, or tail

index, nu is the number of data sets exceeding the

threshold u and n is the total data points. Moment

estimators in equation 3 can be used here as

approximations to estimate σ and ξ .

We used a daily forecast of VAR and ES based on rolling

window approach of Harmantzis et al (2006). The rolling

period considered is 125, 250 and 500 days. Thus for

126th day we estimate VAR and ES using data from day

1 to day 125 for all the three distributions mentioned

above. Similarly 127th day forecast is generated by rolling

the window one day ahead i.e day 2 to day 126 etc.

Similar approach is followed for other windows of 250

and 500 days. We have used 95% as the confidence level.

VaR and ES for these windows of time period is

calculated for all the three distributions mentioned above

using the equations underlying these distributions for

VaR and ES. Under POT method for GPD the threshold

is set at 50% of maxima in the time window. This is done

because there is no standard methodology to choose a

threshold in POT method (Embrechts et al., 1997) and

our objective was to demonstrate the utility of threshold

method rather than achieving definite results.

We also performed measure-of-fit test for VaR and ES

for all three distributions. For VaR we record the

violations, which were the returns in the data set

exceeding the forecasted VaR. If the model was a perfect

fit then, VaR violations must be 1 – α, where α  was the

confidence level. These violations were statistically

tested using binomial testing. If the violations were

statistically significantly less than 1 – α, then the model

was overstating VAR and vice versa. Thus null

hypotheses that the model was a good fit could be tested

using binomial tests. The null can be rejected if the p-

value is less than 0.05.

For ES, it is to be noted that when VaR violations occur,

the difference between actual returns and ES must be

statistically zero for a good fit model. This difference

can be statistically tested using t-test with the null

hypotheses of the difference being zero. We can reject

the null hypotheses if the p-values are less than 0.05.

5. Results

First the VaR calculations were done for all the time

series and for three different kinds of distributions. The

VaR violations, defined as data points where daily return

exceeds that of calculated VaR, was noted and the total

number of such violations were compared to the

expected violations. The number of expected violations

must be 5% for 95% confidence level. If the violation

exceeds the 5% level then VAR was underestimating the

risk and vice versa. To check for the difference between

VAR violations and that which were expected, Binomial

test was employed. The results for different time series

and for different window sizes were tabulated below

in Table 1.

From Table 1 it can be seen that the Empirical distribution

significantly overestimate VaR for all window sizes. For

Gaussian distribution, except FTSE 100, VaR model

properly fitted the data for other time series. Window

size of 125 seems to be a proper fit for valuing VaR

through Gaussian distribution and 500 size window

significantly overestimates the risk. Similar results are

obtained for EVT (GPD) distribution. Except FTSE, VaR

model properly fits for other time series. Window size
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of 125 seems appropriate here also and 500 days window

is least preferred.

We also conducted ES calculations for all the time series
and all the size windows. For estimating the fit for the
models we looked for the points where VaR violations
occurred and estimated the difference between actual
returns and estimated ES. It can be noted here that this
difference for a better model must be statistically zero.
Thus we applied the t-test to measure whether the mean
difference between actual returns and the ES is different
from zero. The results for t-test are tabulated below in
Table 2.

It can be seen from Table 2 that for Empirical distribution,
window size of 125 days does not properly relate to the
data and ES consistently underestimates the risk. This
fit is improved for all the time series, except FTSE 100,
for window sizes of 250 and 500 days. Gaussian
distribution seems to be barely fitting the SENSEX and
NIFTY. For these time series ES consistently
underestimates the risk. For window size of 500 ES
shows same pattern for FTSE 100 too. Rest of the time
series window combinations seems appropriately

Gaurav Singh Chauhan

Table 1 : Binomial Test for VaR violations

SENSEX NIFTY S&P 500 FTSE 100

Empirical Distribution

Expected Series Actual Siqnifi. Series Actual Siqnifi. Series Actual Siqnifi. Series Actual Siqnifi.

178.3 BSEH125 210 0.0095 NSEH125 219 0.0014 SPH125 215 0.0034 FTH125 219 0.0014

172.05 BSEH250 202 0.0120 NSEH250 204 0.0081 SPH250 208 0.0035 FTH250 208 0.0035

159.55 BSEH500 191 0.0071 NSEH500 186 0.0193 SPH500 214 0.0000 FTH500 215 0.0000

Gaussian Distribution

178.3 BSEG125 190 0.1939 NSEG125 191 0.1739 SPG125 193 0.1380 FTG125 212 0.0063

172.05 BSEG250 178 0.3315 NSEG250 173 0.4813 SPG250 199 0.021 0 FTG250 205 0.0066

159.55 BSEG500 175 0.1133 NSEG500 164 0.3700 SPG500 204 0.0003 FTG500 212 0.0000

EVT (GPD) Distribution

178.3 BSEE125 188 0.2380 NSEE125 191 0.1739 SPE125 193 0.1380 FTE125 211 0.0078

172.05 BSEE250 178 0.3315 NSEE250 173 0.4813 SPE250 198 0.0251 FTE250 205 0.0066

159.55 BSEE500 174 0.1292 NSEE500 163 0.4009 SPE500 204 0.0003 FTE500 212 0.0000

Table 2: t-test to measure the mean difference between actual returns and the ES

Empirical Distribution

SENSEX NIFTY S&P500 FTSE100

Series N Mean Signif. Series N Mean Signif. Series N Mean Signif. Series N Mean Signif.

BSEH125 210 -0.0031 0.0007 NSEH125 219 -0.0026 0.0060 SPH125 215 -0.0019 0.0028 FTH125 219 -0.0014 0.0135

BSEH250 202 -0.0018 0.0724 NSEH250 204 -0.0013 0.1926 SPH250 208 -0.0013 0.0676 FTH250 208 -0.0017 0.0044

BSEH500 191 -0.0015 0.1566 NSEH500 186 -0.0019 0.0957 SPH500 214 -0.0015 0.0632 FTH500 215 -0.0020 0.0025

Gaussian Distribution

BSEG125 190 -0.0020 0.0434 NSEG125 191 -0.0024 0.0219 SPG125 193 -0.0008 0.2745 FTG125 212 0.0001 0.9256

BSEG250 178 -0.0024 0.0201 NSEG250 173 -0.0030 0.0089 SPG250 199 -0.0012 0.1310 FTG250 205 -0.0011 0.0865

BSEG500 175 -0.0022 0.0508 NSEG500 164 -0.0039 0.0015 SPG500 204 -0.0024 0.0034 FTG500 212 -0.0025 0.0004

EVT(GPD)Distribution

BSEE125 188 -0.0011 0.2376 NSEE125 191 -0.0011 0.2613 SPE125 193 -0.0007 0.3452 FTE125 211 0.0001 0.8414

BSEE250 178 -0.0016 0.1305 NSEE250 173 -0.0019 0.0869 SPE250 198 -0.0009 0.2368 FTE250 205 -0.0008 0.1800

BSEE500 174 -0.0021 0.0645 NSEE500 163 -0.0032 0.0097 SPE500 204 -0.0019 0.0231 FTE500 212 -0.0020 0.0028
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relating to the data. GPD seems to be a better model than

both the Empirical distribution and the Gaussian

distribution. Except for window size of 500 days GPD

shows a good fit for all the time series and for all the

window sizes.

6. Managerial Implications

As has been witnessed in recent market moves, financial

markets are increasingly being exposed to both

exogenous and endogenous shocks. An important feat

in managing these uncertainties is to precisely predict

these shocks and design models for their remedy. Rather

than investing in resources to estimate the timings of

such volatilities, it seems to be a much better option to

estimate the appropriate risk exposure in dealing with

particular financial assets. Following such an approach

risk measures such as VaR and ES comes handy in

estimating these exposures.

However, appropriate fit between these risk measures

to the concerned distribution of asset prices would be

quite challenging for risk managers. Ex post estimation

of parameters of well known distribution may not serve

the purpose because of inherent lack of fit of these

distributions to real time series data.

Managers are therefore left with relative decision making

where while working with different distributions they

tend to attain certain confidence in fitting these

distributions to real time series data. Empirical analysis

such as the one dealt with in this paper helps us to make

use of certain distributions which represents the volatility

in financial time series pretty well. However, caution

needs to be applied in such uses of these distributions

with certain risk measures as some distributions might

look to be artificially suited to these risk measures.

7. Conclusion and Discussion

We have studied EVT and its features with the help of

GPDs which are hypothesized to describe the risk of rare

events in a better manner. Shortfall of VaR as a risk led

us to search for better options; that can capture rare

events with more certainty. To empirically interpret the

relation between different distributions and different

risk measures, we empirically tested the fit for two of

the risk measures viz VaR and ES to three different

distributions namely empirical, Gaussian and EVT

(GPD) for four real time series consisting of Indian and

global stock indices. We relied on previous studies to

lead us through the introduction of EVT and different

risk measures and to guide us for empirical testing.

The findings point towards the relative importance of

EVT in exploring dynamics of rare events in a distressed

market setting. Higher volatility of Indian stock indices

which are associated with their higher returns are seen

to be better encapsulated by extreme value distributions,

which enriches risk measures. Also, for all the stock

indices under consideration, market risk seems to be

better modeled using EVT rather than conventional risk

measurements.

The empirical analysis made use of approximations

suggested in previous research for deriving moment

estimators. The accuracy and mathematical convergence

of these can be improved significantly with sophisticated

mathematical softwares and algorithms. Parameter

estimation for GPD is one such challenging area that

needs to be further explored with respect to mathematical

efficiency and relative utility for approximations have

to be made. Moreover, the analysis can be better

reinforced by further tests.

Although we have primarily checked for significant

serial correlations in time series that have been used,

some of these tests may take better care of associated

serial correlations; they may be used in checking

clustering of extreme market moves in certain period

of analysis. This area provided us a ground for further

research in refining the finding and draw seasoned

inferences thereof.
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Notes

1. Concordance is the basic measure of association be-
tween two random variables. Two pairs of observation
on continuous random variables X and Y denoted by
(x1, y1) and (x2,y2) are said to be concordant if x1-x2

is of the same sign as y1-y2. That is the pairs are
concordant if:

(x1-x2)(y1-y2)>0 and discordant if (x1-x2)(y1-y2)<0.

Following are the properties of a concordant metric
m(X,Y):

1. m(X,Y) ? [-1,1],

2. m(X,Y) = 0, if X and Y are independent

3. if F(X,Y) G(X,Y) then, mF(X,Y)   mG(X,Y); where F(.)
and G(.) are two possible joint distributions.
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