
The possibility of measuring efficiency of a firm on the
basis of information on inputs and outputs was first
introduced by Farrell (1957), followed by Koopmans
(1951) and Debreu (1951). Since then one of the most
widely used approach of efficiency analysis has been
frontier approach. Aigner and Chu (1968) suggested a
deterministic frontier model for estimating inefficiency
which later found to have limitation of isolation of
inefficiency from the noise as both are mixed together
in the error term of the model. This model was improved
with inclusion of noise, termed as stochastic frontier
model (SFM), by Aigner, Lovell and Schmidt (1977),
Meeusen and van den Broeck (1977) almost
simultaneously where the error is decomposed into two
random components representing the noise and
inefficiency with the assumption of independence. After
a long period researchers argued the validation of the
independence assumption between the error
components. In recent years several researches have
been developing SFM with correlated error components
under different modelling approaches. This paper
surveys this journey of SFM with correlated error
components and discusses di f ferent  statistical
approaches already developed to model SFM with
correlated error components.   
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Ever since the stochastic frontier model (SFM) was
proposed by Aigner, Lovell and Schmidt (1977) and
Meeusen and van den Broeck (1977), the last three
decades has seen extensive development in the literature
of the SFM. The central research of the SFM is to estimate
the inefficiency of a concerned firm or economic agent.

Recent Developments in Stochastic Frontier
Model with Correlated Error Components

Two broad paradigms for measuring inefficiency
developed throughout this period, one based on an
econometric approach to estimation of theory based
models of production, cost or profit and other based on
nonparametric, programming approach to analysis of
observed outcomes. In this paper we survey the
underlying models and econometric techniques that
have been used in studying technical inefficiency in the
stochastic frontier framework, on which a number of
review papers (see: among others, Greene, 1993 and
Murillo-Zamorano, 2004), and a few books (Coelli, Rao
and Battese, 1998; Fried, Lovell and Schmidt, 1993 and
Kumbhakar and Lovell, 2000) have already been written.
We also present some of the recent developments in
econometric methodology in the context of SFM with
correlated error components. Needless to say the present
review is not comprehensive and owes much to these
excellent books and review articles. The omission of
other topics does not mean that we consider them
unimportant. Also, the author restricts the survey within
the cross-section data model only.

Many applications of the SFM in diverse field have been
coming up since its inception. SFM has many applications
in management discipline like financial industries and
resource-based industries. We have reported a few of
them here. Khatri et al. (2002) estimated inefficiency for
corporate sector performance and examined the role of
corporate governance for a panel dataset of 31 of the
largest non-financial companies listed on the Kuala
Lumpur stock exchange for the period 1995 to 1999.
Dawson & Dobson (2002) used SFM to measure
managerial efficiency for English football association.
Troutt et al. (2005) analysed the performance of a set
of mutual funds from morning star database using SFM.
Camanho and Dyson (2005) estimated the cost efficiency
for a set of bank branches. Cummins et al. (2005)
measured the efficiency for the Spanish insurance
industry. Silva et al. (2005) measured profit efficiency



for a set of Portuguese bank branches and found that
profit improvement of bank branches is due to allocative
efficiency in the long run whereas technical efficiency
is responsible for the short run. Dar A. A. (2007) studies
firm efficiency in studies of labor market of Canada.
Dolton et al. (2007) examined how students allocated
their time to efficiently score from a survey conducted
in April 1999 on first and final year students from the
different qualifications offered at the University of
Malaga. Choi, K.-S. (2011) used stochastic frontier
function to measure the efficiency of baseball manager.
Brissimis et al. (2011) estimated efficiency on a panel
dataset of commercial banks of 13 EU countries for the
period 1996 to 2003 and found that the most technically
efficient banking sectors were in Austria, Germany and
the UK.

The plan of the paper is as follows. Section 2 describes
modeling of technical inefficiency which is the prime
interest of these models, and Section 3 considers
econometric analysis of estimating the technical
inefficiency. Section 4 describes the basic cross-sectional
SFM, its different methods of estimation. Section 5
discusses different approaches of modeling and
estimation methods of SFM with correlated error
components. In Section 6 we present an illustrative
study of the different modeling approaches using US
electricity data. Finally, Section 7 gives the concluding
remarks and some future research developments in the
field.

The production frontier or its dual cost frontier, or the
convex conjugate of the two, the profit frontier, represents
the maximum output obtained with a given set of inputs
or the minimum cost of producing that output given
the prices of the inputs or the maximum profit attainable
given the output, inputs, and prices of the inputs. The
estimation of frontier functions is the econometric
exercise with the underlying theoretical proposition
that no observed firm can exceed the frontier.
Measurement of (in)efficiency is, then, the empirical
estimation of the extent to which observed agents (fail
to) achieve the theoretical frontier. The estimated model

of production, cost or profit is the means to the objective
of measuring inefficiency.

The measures of the different concepts of efficiency,
addressed by Debreu (1951), Farrell (1957), Koopmans
(1951) and Shephard (1953) are based on the economic
notion of 'technology'. A firm's technology can be
alternatively represented by Production Set (T), Output
Set (P(x)) or Input Set (L(y)).

Let a firm uses inputs x = (x1, ...., xn)Rn
  to produce

outputs y = (y1, ...., ym)Rm


. A production technology
is given by the input-output combination z = (x, y). A
production technology is said to be feasible if and only
if y can be produced from the input x using the given

technology i.e. T = {(y, x) = z : x can produce y}Rm n

 .

The output set P(x)={y:z=(y, x)T}Rm


 consists of all
those feasible outputs that can be produced using the

input x and the input set L(y)={x:z=(y, x)T}Rn
  consists

of all those feasible inputs x that can produce a given
level of output y.

Shephard (1953, 1970) introduced the notion of distance
function to provide a functional form of technology.
Distance function can be described in terms of both the
output set P(x) and the input set L(y) . The input and
output distance functions are respectively di(y,x)=
max(:x/L(y), >1) and d0(y,x)=max(:y/P(x),0<<
1). This input distance function gives the maximum
radial reduction in input to produce a given level of
output whereas output distance function gives the
maximum radial expansion of output possible for a
given level of inputs.

The Debreu - Farrell input and output oriented measures
of technical efficiency are respectively TEi(y, x)=
max( xL(y)) and TE0(x, y)=max( yP(x)).

Let a firm uses inputs x with prices q = (q1....qn) and we
have single output y that can be sold at price p. The
production frontier is then:

f(x)=max{y:yP(x)}=max {y:xL(y)}

which is the maximum possible output technologically
feasible for this level of inputs.



In this case, the output oriented measure of technical
efficiency becomes ratio of maximum to actual output

TE0(x, y)=[max(y < f(x)]–1

Cobb and Douglas (1928) estimated production function
using OLS technique using the observed outputs and
inputs to estimate the efficiency of a firm in early
twentieth century long before Farrell (1957). However,
the assumption of OLS with observations lie around the
estimated model violated the frontier property of the
production function that each observation lies below
the frontier. Next forty years ignored the frontier property
of the production function and estimated 'average'
production function which ruled out its use for efficiency
estimation.

The possibility of measuring the efficiency of a firm on
the basis of information on the inputs used and output
produced started with Debreu (1951), Farrell (1957) and
Koopmans (1951). Two different approaches of efficiency
analysis have been developed since then: one is the
Frontier Approach and the other is Data Envelopment
Approach (DEA). Since the present work follows the
frontier approach of efficiency, we omit the review of
the vast literature on efficiency analysis by the Data
Envelopment Approach. Detailed discussions on this
approach of efficiency analysis can be found in Coelli,
Rao and  Battese (1998); Fried, Lovell and Schmidt
(1993).

The frontier approach is based on the econometric
analysis and requires stochastic specification of the
frontier function. This approach estimates the frontier
model and provides some estimators for efficiency.
Estimation of efficiency under this approach is carried
out on deterministic as well as stochastic frontier models.
In a deterministic frontier model inefficiency is
represented by a single one-sided stochastic term with
no specification of noise whereas the stochastic frontier
model has random noise separated out from inefficiency
leaving the observational errors with two latent
components called noise and inefficiency.

Consider a set of 'n' firms produces a single output
using a certain technology and 'K' inputs. Let yi be the

output, and xi be the vector of the inputs used, by the
ith firm. Then the ith observational equation of the
production frontier model is given by

yi = f(xi, )TEi, i = 1,2,....,n (3.1)

where f(xi, ) is the production frontier,  is the vector
of unknown technological parameters and TEi is the
output oriented efficiency of ith firm. All the observations
satisfy the frontier property with respect to the estimated
production frontier. Hence, we have

TEi = yi/f(xi, ) (3.2)

which defines the technical efficiency as the ratio of
observed output to the frontier output under the current
technology. The amount by which an observation lies
below the frontier is called inefficiency when TEi < 1.
The production frontier model given in equation (3.1)
is called deterministic frontier model. This model was
estimated by Aigner and Chu (1968) using programming
technique. Richmond (1974) improved upon the COLS
estimates to make them unbiased and consistent. In
order to give statistical content to the programming
estimators proposed by Aigner and Chu (1968), Schmidt
(1976) estimated the model (3.1) by the maximum
likelihood (ML) method assuming exponential and half-
normal distribution. Later, Greene (1980) estimated
another deterministic frontier model assuming i's are
distributed as gamma variables. This model too was
estimated by the ML method.

Although the deterministic frontier approach of Aigner
and Chu (1968) and Schmidt (1976) estimates the frontier
function respecting its frontier property, an obvious
limitation of this approach is that one cannot isolate the
effect of inefficiency from that of the random noise as
both are lumped together in the disturbance term of the
model. Also, it violates one of the regularity conditions
required for application of ML method viz. the support
of the distribution of y must be independent of the
parameter vector.

The stochastic frontier approach of efficiency analysis
which aimed to rectify the above mentioned limitation
of the deterministic frontier approach, was introduced



by Aigner, Lovell and Schmidt (1977), Meeusen and van
den Broeck (1977) almost simultaneously. The novelty
of the stochastic frontier approach lies in i) decomposing
the disturbance term into two random components
representing the "random noise" and the "inefficiency"
and ii) associating the frontier property with the
stochastic frontier rather than the deterministic frontier.
While the decomposition enables one to separate out
the effects of random noise from the inefficiency and
makes the support of the distribution of y independent
of the parameter space, the concept of stochastic frontier
ensures the frontier restriction on the observed outcomes.

Under the above assumptions, the simplest stochastic
production frontier model can be represented as

yi = f(xi, ).exp(vi)TEi (4.1)

where f(xi, ) is the deterministic frontier indexed by
the unknown technological parameter vector , yi is the
observed output, xi  is a vector of inputs,  vi is the random
noise, TEi = exp(–ui) is efficiency of the firm and ui is
one-sided (non-negative) latent random variable. The
shortfall of the observed output (yi) from the stochastic
optimal outcome, given by exp(–ui), measures the
technical efficiency of the firm characterized by stochastic
elements that varies across firms.

Assuming f(xi, ) takes the log-linear Cobb-Douglas
form (4.1) can be expressed as a linear function of the
unknown parameters,

yi = xi
’ + vi –ui (4.2)

where yi is an appropriate known function of output
and xi is a vector of appropriate known functions of the
inputs.

The model in (4.2) has two error components, often
referred as "composed error" model. For statistical
inference, the two-sided random noise (vi) is assumed
to be normally distributed and a number of probability
distributions have been used to model the one-sided
inefficiency (ui). Moreover, random noise (ui) and
inefficiency (vi) are assumed to be independent.

Let  g(vi, ) and h(ui, ) be respectively the densities of
vi and ui indexed by the unknown parameter vectors

 and  and =()’ be the unknown parameter vector
of the model.

The OLS would not be appropriate for estimating the
parameter vector  as the intercept term of the
deterministic frontier and the non-zero mean of ui  are
mixed together in the intercept term of the regression
model which can not be separated out from the OLS
estimate of the intercept in the regression equation.
However, MOLS method of Richmond (1974) can be
applied to estimate  under specific probability
distribution of 'ui'. Thus it is necessary to specify the
distributions of   and   for parametric estimation of SFM.
Given the distributional assumptions regarding the error
components, the parameters of the cross-section data
SFM has been estimated by a spectrum of estimation
methods viz. likelihood-based parametric, semi-
parametric, Bayesian and Bayesian semi-parametric
methods. In the parametric estimation of the SFM,
however, the ML method, and their different variants
like Simulated ML and EM method, played a dominant
role, although COLS, MOLS, two-step OLS, GMM and
IV methods have been used in specific situations.

The log-likelihood function of the model, based on the
output yi can be obtained from the joint probability
density of (ui, vi) using the transformation i=yi – xi

’
and integrating out ui and is then given by

   l(|y) = log
i

n




1
g y x u h u dui i i i i( , ) , ,'      0  (4.3)

The expression (4.3) gives the general expression for the
log-likelihood function of the model. The shape of the
likelihood function and the nature of the likelihood
equations, however, will crucially depend upon the
choice of the probability densities of ui and vi.

While the density function of the random noise vi has

been the universally accepted as N 0 2,v , the choice of

the density function for the inefficiency, however, has
been varied. In fact, a sizeable portion of the works in
the SFM literature has been devoted on the estimation
of SFM under alternative density function of the
inefficiency. For example, in normal-half-normal SFM,

proposed by Aigner et al. (1977), ui~N+ 0 2,u . The

model was estimated using ML method via BHHH



algorithm. Meeusen and van den Broeck (1977) proposed
the normal-exponential SFM where ui~Exp(l/). The
parameters of the model were estimated by ML method.
Greene (1997) later estimated the model by MOM.

Both the normal-exponential and the normal-half-normal
SFM postulate that the mode of the inefficiency
distribution is at zero which goes against the common
perception of the distribution of inefficiency among
firms. In response to this criticism, Stevenson (1980)

proposed truncated normal i.e. ui~TrN  u u, 2 , which

has a non-zero mode, as a plausible probability model
for inefficiency and estimated the model by ML method.
Later Battese and Coelli (1988) used Australian diary
data to estimate the model by the COLS and the ML
methods under two alternative assumptions regarding
the parameter u. They also performed the likelihood
ratio test for H0 :u=0 and found it significant for the
dairy data.

The normal-gamma SFM where ui~G(P, ) , proposed
by Beckers and Hammond (1987), has several attractive
properties and nests the normal-exponential SFM. The
log-likelihood function of the normal-gamma SFM is
not only complicated but also involves integrals which
has no closed form and can be approximated using some
suitable numerical approximation. Greene (1990)
estimated the model with approximating the intractable
integral by the mathematical quadrature formula. Later
Greene (2003) used Simulated Maximum Likelihood
(SML) method to estimate the same model where the
intractable integral in the log-likelihood function is
estimated by MC simulation using Halton numbers.

The noise-inefficiency independence is an important
assumption that has been consistently maintained in
most of studies on SFM. Recently, however, some
researchers argue regarding the validity of this
assumption. The logic behind this argument is that the
noise-inefficiency correlation may arise due to the effect
of noise which is beyond a firm's control on the efficiency
which is under firm's control in taking economic
decisions under uncertainty. For example, Pal and

Sengupta (1999) who were first to relax the noise-
inefficiency independence assumption in a simultaneous
equation cross-section data SFM argued that the cropping
decision in agriculture may depend upon on random
factors like weather of the previous season. They
estimated a stochastic production frontier model with
correlated error components by systems approach using
cross-section information on Indian agricultural firms
and found significant noise-inefficiency correlation in
the data. Subsequently Smith (2008) argued that this
assumption should be relaxed at least for the empirical
verification in absence of any economic logic or empirical
evidence in support of  any noise-ineff ic iency
independence. Smith (2008) also found significant
negative noise-inefficiency correlation in both cross-
section as well as panel data SFMs.

Moreover, the effects of many institutional and social
factors which are beyond the control of a firm but affect
its productive efficiency are accounted for by the noise
component of the composite error SFM and may lead
to noise-inefficiency correlation. Finally, it is has been
felt that in absence of any empirical evidence in support
of the noise-inefficiency independence, one needs to
develop an SFM with correlated error structure at least
for empirical verification (Bandyopadhyay and Das,
2006). Furthermore, misspecification of the model is
also another potential source of noise-inefficiency
correlation. For example, let the true model be
yi  = a + bxi + czi + vi –ui where zi, is age of the firm,
vi is the noise and ui is the inefficiency. Suppose ui is
uncorrelated with both xi and vi but correlated with zi.
Now, if the implemented model is yi = a + bxi + wi – ui,
where wi = czi + vi, then clearly the error (wi) and the
inefficiency (ui) are correlated in such a model. The
noise-inefficiency correlation in this case arises due to
the misspecification of the "true" model. These evidences
which support the noise-inefficiency correlation will
enable us to empirically verify the validity of this
assumption.

Using the equation (4.2), a cross-section SFM with
correlated error components can be written as:

yi = xi’+vi–ui, i = 1,2,.....,n (5.1)

–< vi < , 0 < ui < 



where the latent random variables vi and ui, assumed
to be statistically dependent, have the joint density
function f(vi, ui; ) indexed by the parameter vector .

I t is necessary to develop the noise-inefficiency
dependence structure through an appropriate joint
density function of vi and ui to implement the model.
In a few studies that have been carried out so far on
correlated error components SFM in recent years such
as Bandyopadhyay and Das (2006), Burns (2004), Pal
(2004), Pal and Sengupta (1999), Smith (2008) three
alternative approaches towards modeling noise-
inefficiency dependence can be found which may be
termed as: Distribution Specific Approach (DSA),
Conditional-Marginal Approach (CMA), and Copula
Approach (CA).

In DSA one assumes a suitable joint density function
of the error components like the truncated bivariate
normal distr ibution (Pal and Sengupta, 1999;
Bandyopadhyay and Das, 2006). On the other hand in
CMA, the joint density function of the error components
can be obtained by combining the marginal distribution
of the inefficiency with the conditional distribution of
the random noise given the inefficiency (Pal, 2004). In
CA, joint distribution function of the error components
can be obtained by combining the marginal distributions
of noise and inefficiency through a copula function
(Burn, 2004; Smith, 2008).

Pal and Sengupta (1999) proposed the first ever SFM
with the correlated error components which was based
on the distribution specific approach. The model they
used was a cross-section data simultaneous equation
stochastic production frontier model which presented

as  1n yi = 1n 0 + k
k
  1n xki + vi – ui

and 1n w
P

ki

i
 – 1n 0 – 1n k + 1n xk –  j

j
 1n xji = ui +

zki, i = 1,.....n.

where yi is the output with Pi as output price, xi is a
set of inputs with price wi. Regarding the distributions
of error components, it was assumed that i) (ui, vi) are
jointly distributed as truncated bivariate normal with

parameters    u u v, , , ,0 2 2  with ui  being truncated at

zero, ii) technical inefficiency (ui) and allocative efficiency
(zi) are assumed to be independently distributed and
iii) z =(z1,.....zm)’~MN(0, ). Making the transformation
Z1 = u + v and Z2 = z+lu where l = (1, 1,.....1)’, the density
function of (Z1, Z2) can be written as
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The model was estimated by the ML method using S-
PLUS software.

Das (2009) proposed a SFM with correlated error
components for a single equation SFM in the line of Pal
and Sengupta (1999) where vi and ui are assumed to be
jointly distributed as truncated bivariate normal with

parameter vector       v u v u u, , , , , '2 2
0  where ui is

truncated below at u0 an unknown non-negative point
of truncation. The model was referred as truncated
bivariate normal stochastic frontier model (TBN-SFM).
The truncation point can be considered as the threshold
level of inefficiency for the firms. Das (2009) analysed
the specification and estimation of different sub-models
under TBN-SFM.

The joint density function of   and   under this specification
is given by
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where,

C =     
1

2 1
02 1 /     


   u v u uu  and   is the

distribution function of a standard normal variable.

Using the transformation and after simplification, the
density function of yi can be written as
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The density function of   given in (5.2) does not  follow
a yi standard distribution under the parametric
specification of  . However, under the transformation

of parameter  vector  0, , , , , ,         v u u

   , , ,1 2
 , yi follows extended skew-normal (ESN)

with parameters  , , 1 and 2 (Azzalini, 1985) where
 = x’+. This re-parameterization, however, is not
interest specific as the different measures of inefficiency
cannot be expressed in terms of .

Under alternative parametric restrictions, the TBN-SFM
nests a number of sub-models viz. i) with u0 = v =
u = = 0, we get the normal-half-normal SFM (Aigner
et al., 1977), ii) with u0 = v == 0, we get the normal-
truncated normal SFM (Stevenson, 1980), iii) with
u0 = v = 0,  we get TBN-SFM of Pal and Sengupta (1999)
and (iv) with u0 = v = u = 0, we get TBN-SFM of
Bandyopadhyay and Das (2006).

The moment generating function (MGF) of   derived in
Das (2009) and is presented as
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Using the expression of MGF of y we get the following

expressions for the first four moments and the measures
of skewness and kurtosis of y.

The expressions for first four moments, skewness and
kurtosis are respectively given by:

E(y) = + d h(k)
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where

2
2 2d 1   , 2

1 2k 1   and h(k) is the hazard

rate of a standard normal variate.

Putting different parametric restrictions in above
equations one can get the expressions for the first four
central moments, skewness and kurtosis of y for different
sub-models.

Das (2009) examined analytically the identification status
of the TBN-SFM and standard normal-half-normal and
normal-truncated normal SFM which are nested by the
TBN-SFM. It was found that i) the normal-half-normal
SFM is globally identifiable, ii) normal-truncated normal
SFM is locally near-identifiable and iii) TBN-SFM is
either unidentifiable or near-identifiable even in a
restricted parameter space. Pal and Sengupta (1999)
model with restriction u0 = v = 0 is near identifiable
and Bandyopadhyay and Das (2006) model with
restriction u0 = v =u = 0 is unidentifiable.

Of interest in the SFM is the technical efficiency which
is based on the conditional distribution of inefficiency
given the observational error. The measure of technical
efficiency due to Battese and Coelli (1988) is given by:
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and

h(z) = (z)/(–z) is the hazard (or failure rate) rate for
a standard normal variate.

Das (2009) proposed the EM method to estimate the
parameters of the near-identifiable TBN-SFM Pal and
Sengupta (1999) model. The TBN-SFM can be readily
recast in "missing data" framework as the latent random
variable inefficiency "u" can be considered as the variable
with missing observations. Then,  y = (y1,.....,yn)’,
u = (u1,.....,un)’ and w = (y’, u’)’ respectively be the
observed data, the missing data and the complete data
vectors and let f(w; ), g(y; ) and h(u|y, ) be the density
function of the complete data, observed data and missing
data given the observed data respectively where

 2 2
u v u, , , ,       . Also let l(|w), l(|y)  and

l(|u, y) be the associated log-likelihood functions.

The proposed EM algorithm based on Dempster et al.
(1977) can be described as follows:

E-Step: Let n̂  be the estimate of at the nth step of

iteration. Then, given n̂ , the Q-function of the model

is given by

     n n
ˆ ˆQ | l |w h u| y; du    

Note that, conditional on y, w and n̂ , the Q-function

 n
ˆQ |  is a function of  and n̂ . M-Step: In the M-

step, the Q-function is maximized with respect to  to

obtain n 1̂  , the (n+1)th step estimate of . Thus

n 1̂   = arg max  n
ˆQ | 

Given n̂ , the first order conditions for maximization

of  n
ˆQ |  are highly non-linear in n 1̂  , and is  solveded

by using BHHH or BFGS algorithm. The Q-function of
the model is given by (Details are found in Das (2009))
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hazard rate of a standard normal deviate.
The Bandyopadhyay & Das (2006) model can be
estimated using the type-II maximum likelihood method
(TML) of Berger et al. (1999) where the parameters of
interest are first estimated by the integrated likelihood
method and the estimated value of these parameters are
used in the full likelihood function of the model to
estimate the rest parameters. Das (2009) applied this
method to estimate the Bandyopadhyay & Das (2006)
model where the model becomes identifiable if either
of the unidentifiable parameters and is known. This
feature helps to use this method to estimate the
unidentified model.

The estimation method i s applied treating the
unidentifiable parameter as the nuisance parameter
and the remaining parameters ,  and as the parameter



of interest. The parameter vector  can be written as
= (1, )’ where 1 = (,,). Let be the likelihood
function of the model and () be a non-negative weight
function of the unidentifiable parameter . Then the
integrated log-likelihood function (ILF) of the model is
given by

     1 1
0

l log L , d     


 

In the first step of the TML, the identifiable parameter
1 is estimated by maximizing the integrated log-
likelihood function and the TML estimate of 1 is given
by

 


 
1

11TMLˆ arg  max  l y

In the second step, 1TML̂ is substituted in the log-

likelihood function of the model and the unidentifiable
parameter is estimated by maximizing the resulting

log-likelihood function of the model given 1TML̂  and

the TML estimate of  is given by

   TML 1TML 1TML
ˆ ˆ ˆarg   max   l , arg   max   log  L ,

 
     

In order to implement the TML method, one needs to
specify (), the weight function of the nuisance
parameter  . Das (2009) used one informative and one
non-informative weight function for this model. The
informative weight function is given by the type-2 beta
density whereas the improper non-informative weight
function is proportional to the reciprocal of the parameter
given by . Das (2009) also studied the asymptotic
behaviour of these estimators empirically through MC
simulation and the results showed fairly good sampling
properties of the estimators for moderately large samples.

The ILF under the non-information weight function was
derived in Das (2009) and is given by
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where   2
i i i 2y x ' ,   1          .

The above ILF under non-informative weights involves
intractable integral and can be evaluated using the MC
simulation method as it can be expressed as a expectation
of some function of the parameter . Thus the ILF can
be written as
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where,  h  , the importance sampling density, given

by the density function of N+(0, 1).
Das (2009) used the MC simulation method and the
simulated ILF can be presented as
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where   2
2k k k1 ,  ,  k = 1,....,R       is a random

sample of size R from N+(0, 1).

In the conditional-marginal approach proposed in Pal
(2004) the joint density function of error components
are generated by combining the marginal density of
inefficiency with the conditional density of the noise
given inefficiency. This is much more generalised
approach over distribution specific approach as different
non-normal distributional assumption on the error term
can be taken and joint density function can be developed
through conditional distribution approach to introduce
non-independence. For example, Pal (2004) developed
a SFM with correlated noise-inefficiency by taking the
conditional density of noise given inefficiency as normal
whereas the marginal density of inefficiency as half-
normal. In his specification the conditional density
function of noise given inefficiency can be taken as

normal with mean   v u uu    and variance

 2 2
v 1   and   2

uu ~ N 0,    as one have bivariate

normal distribution as joint density function with   being
the correlation coefficient. Pal (2004) also proposed a
gamma distribution as the marginal distribution of u

i.e.   u ~ G P,    to ensure the uni-modality of the

distribution which fits the situation of only a very few



observations near  the f rontier  curve and

     2 2
v u u vv|u ~ N u , 1      . However, they

did not derive the joint distribution and marginal
distribution of error under these assumptions. We

described the model with the assumption of  u 0  .

The joint distribution can be obtained as follows:
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Using the transformation and integrating out ui, the
marginal density of i will be
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Using the transformation  i i iy x '   , and after some

simplification the density function of yi becomes
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The log-likelihood function for one observation is then
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where  2 2
v u, , ,P, ,      .

This intractable integral involved in the log-likelihood
function can be expressed as the expectation of a function

of the random variable ui where  2
i *i *u ~ N ,   as
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One can randomly draw a sample from this distribution
and then use the simulated draws to estimate the
expectation of the function with sample mean. The
resulting log-likelihood function is known as the
simulated log-likelihood function and given by
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where  uir is a random sample of size R from the
distribution of ui.

Similarly, an exponential distribution as the marginal
distribution of ui can be taken by assuming P = 1 in the

gamma model i.e.  iu ~ Exp  . The corresponding log-

likelihood function is then has following form

   
 

 2 2 2
v *i

i i2
*

11l |y log log 1 log
21

  
  



                     

The simulated log-likelihood function in (5.4) is smooth
continuous function of the parameter vector  and can
be maximized by using DFP or BFGS method. By the
Lindeberg-Lévy variant of the Central Limit Theorem,
(5.3) will be a consistent estimator of (5.4). However,
as the log transformation is non-linear, the simulated
log likelihood is a biased estimator of the log likelihood.
As a result, the estimates obtained from maximising the
simulated log likelihood are affected by simulation bias
which can be minimised by increasing R. Moreover, the



simulated maximum likelihood estimators are consistent
and asymptotic normal as n   and R  with

n R 0 (Lee, 1999). Furthermore, Bhat (2001) found

that the computation time was approximately one tenth
associated with using 100 Halton draws than with 1000
pseudo-random draws.

The Battese & Coelli (1988) estimator of technical
efficiency, for the SFM with correlated error components
is based on the conditional distribution as follows:
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The simulated estimator of (5.5) for the ith firm is given
by:
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Smith (2008) introduced the SFM with dependent error
components where the joint probability distribution of
two error components is built by the copula approach
of statistical modelling. In this approach the multivariate
distribution function can be built using a copula function
and marginal density functions of the random variables.
The copula function represents the dependence structure
among these random variables. Formally, an 2-variate

copula function,  1 2C u ,u  is a bivariate distribution

function of the uniform [0,1] random variables:

 1 2C u ,u : 2
0,1 0,1      

where  iu ~ U 0,1  for i = 1,2  and   . This modelling

technique is based on a representation theorem of Sklar
(1973). This theorem states that for every bivariate
distribution function has a unique copula function that
captures the dependence structure between the random
variables. The joint distribution function of a set of
random variables can be uniquely expressed as a function

of copula function whose arguments are the marginal
distribution functions of these random variables.

Let F(ui, vi, ) be the joint distribution function of the
random variables ui  and vi .  Then, by Sklar's
representation theorem, there is a unique copula

function,  1 2C u ,u  so that

F(ui, vi; ) =       i 1 i 2C H u ; ,G v ; (5.6)

where  i 1H u ;  and  i 2G v ;  are distribution functions

of ui  and vi  respectively,   is the parameter that captures
the dependence between ui  and vi,  = (1, 2)’ and
 =(, )’.

The copula approach of statistical modelling uses the
relation (5.3) to generate a bivariate distribution function
F(ui, vi; ) from a given set of distribution functions,
F(ui, 1) and G(vi, 2) and an bivariate copula function,

 1 2C u ,u .  The corresponding bivariate densi ty

function, F(ui, vi; )  is obtained by differentiating (5.6)
with respect to ui and vi,

          i i i 1 i 2 i 1 i 2f u ,v , C H u ; ,G v ; h u ; g v ;       (5.7)

 1 2 i i, , , v ,   0<u         

where  i 1h u ,  and  i 2g v ;  are density functions of

ui and vi respectively and  1 2C u ,u = 2
1 2C u u   is the

bivariate copula density function.

After some simplification and integrating ui, we get the
density function of yi from (5.7) as

          i i 1 i i i 2 i 1 i i i 2 i
0

f y , c H u ; ,G y x u , h u ; g y x u , du      


        (5.8)

 1 2, , ,    

Subsequently the likelihood function of the copula-
based SFM for yi,.....yn is:

          
n

i 1 i i i 2 i 1 i i i 2 i
i 1 0

L c H u ; ,G y x u , h u ; g y x u , du      




       (5.9)

Some of the well known bivariate families of copula



which can be used for modelling noise-inefficiency
dependence structure are Fairlie-Gumble-Morgenstern
(FGM), Ali-Mikhail-Haq (AMH), Normal, Frank, Plackett
family (see: Nelson, 1999; Smith, 2008).

Smith (2008) developed the analytical expression for the
density function of observational error with the
assumptions that ui~Exp(u) and vi~L(v) under FGM
copula where
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i u i u

u u u
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v v v v
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The density function of yi is given by

  v v v v v v v v
i i 2 1 i 2 1 i 2 1 i 2 i i

u v u u u v u u u v u u u v u u
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One difficulty with the copula-based SFM, however, is
that the log-likelihood function based on the density
function of  yi of the model involves intractable integrals
which are to be evaluated either numerical method or
MC method. Smith (2008) estimated the model by ML
method approximating the log-likelihood function using
numerical integration. The ML method was performed
using BFGS algorithm. The standard normal-half-normal
distribution was used for the distributions of the error

components in a cross section study of US electricity
data with the AMH, the Frank family and the Plackett
families of copula.

However,  this method can be computationally
burdensome in case of certain copula functions. As an
alternative, simulation estimation procedure can be used.
Simulated maximum likelihood (SML) is one of the
popular methods which uses simulation technique to
approximate an integral arises in the likelihood function
and have no closed form. The estimation procedure
involves transforming the integral as an expectation
with respect to the distribution of a random variable.
One can randomly draw from this distribution and then
use the simulated draws to estimate the expectation
with a sample mean. The log-likelihood function of (5.6)
can be written as

        
n

ui i 1 i i i 2 i i i 2
i 1

L E c H u ; ,G y x u , g y x u ,     


        (5.10)

where the Eui[.] is the expectation with respect to the
distribution of ui.

Burns (2004) used Halton sequence based SML technique
for estimating the parameters copula-based cross section
data SFM. The simulated likelihood function of (5.8) can
be written as

        
n

ik 1 i i ik 2 i i ik 2
i 1 k 1

1L c H u ; ,G y x u , g y x u ,
R      

 

      

where uik are random draws from the distribution of
ui and R is the number of random draws used in the
estimation. Burn (2004) used Halton sequence (Halton,
1960) based random draws which provides
computational efficiency and accuracy than Uniform
random draws in terms of simulation. Bhat (2001) found
more accurate result with 100 Halton draws than 1000
pseudo-random draws. Train (1999) and Sandor and
Train (2004) confirmed this result in the context of
multinomial logit models. Burn used the model of Smith
(2008) to illustrate the proposed SML method to estimate
SFM with correlated error components using US
electricity data. The model was estimated under AMH,
Plackett, Normal, FGM and Frank families of copula
using normal-half-normal error components.



Burns (2004) developed the analytical expression for the
density function of yi with the assumptions that

 2
i uu ~ N 0,  and  2

i vv ~ N 0,  under FGM copula

where

     2 2 2 2i i i i
i u i u i v i v

u u u v v v

u u v v2 1h u ; ,H u ; 2 1, g v ; ,  G v ;     
     

   
            

   

 2 2 2 2i i i i
i u i u i v i v

u u u v v v

u u v v2 1h u ; ,H u ; 2 1, g v ; ,  G v ;     
     

   
            

   

The density function of yi is given by
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The corresponding simulated likelihood function can be
written as
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The Battese & Coelli (1988) estimator of technical
efficiency, for the SFM with correlated error components
under copula approach can be expressed as follows:

       i i i i i i i
i 0
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  (5.11)

The simulated estimator of (5.11) for the ith firm is given

by:
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This section presents an empirical application of the
three different approaches of SFM with correlated error
components discussed above using much analysed cross-
section information on the 123 US electricity firms given
in Greene (1990). The stochastic cost frontier model
(Greene 1990, pp. 154) estimated is given by

               2
f 0 1 2 3 1 f 4 k fIn Cost P   1n Q   1n Q  1n P P   1n P P u v

      3 l f 4 k f 1n P P   1n P P u v

where Q is output and Pl, Pk and Pf are prices of three
factor inputs labor (l), capital (k) and fuel (f). It is assumed
that the noise component (v) is distributed as N   2

v0,
and the technical efficiency component (u) is distributed
as  2

uN 0, . Also, a parametric transformation from
   2 2

u v, ,     where   = 2
v 1 2      and

u v    is used for the estimation of model under
different approaches.  (Table 1)

The estimates of the parameters were derived using
non-information weight under DSA approach. The model

Parameter Estimate of the Parameters

Product DSA CMA Copula

0 -7.391 (0.293) -7.413 (0.327) -7.424 (0.329) -7.524 (0.316)

1 0.405 (0.028) 0.427 (0.031) 0.422 (0.034) 0.418 (0.032)

2 0.031 (0.003) 0.030 (0.002) 0.031 (0.002) 0.032 (0.003)

3 0.244 (0.065) 0.248 (0.027) 0.244 (0.033) 0.254 (0.043)

4 0.061 (0.068) 0.048 (0.049) 0.059 (0.049) 0.062 (0.065)

 0.186 (0.029) 0.215 (0.038) 0.209 (0.042) 0.205 (0.057)

 1.350 (0.148) 0.905 (0.134) 1.114 (0.174) 1.223 (0.192)

 0 -0.326 (0.157) -0.366 (0.177) -0.393 (0.195)

Log-L 67.163 69.276 69.878 70.966

*Figures in the bracket denote the estimated standard errors



was also estimated under CMA and Copula approaches
using the SML method. The bivariate family of FGM
copula is chosen for this analysis. The ML estimates of
parameters under different approaches, along with their
asymptotic standard errors, are reported in Table-1. It
can be noted that the first column presents estimates
of parameters under the standard SFM with independent
error components and next three columns present
estimates of parameters under SFM with three different
approaches of noise-inefficiency correlation. The result
shows that magnitudes of the estimates of the slope
coefficients do not differ significantly for each SFM with
three different approaches of  noise-inefficiency
correlation. Also the variance of different SFM with
correlated error components have higher values compare
to the variance of standard SFM due to correlation
structure. The estimates of correlation parameter are
consistent with negative dependence between the error
components for these data, although the estimated
standard error on each is obviously fairly large.
Moreover, the presence of the noise-inefficiency
correlation have substantial effect on the estimates of
the parameters of the distribution of the error
components; this effect being most pronounced for the
parameter. Table 2 provides descriptive statistics of
estimates of cost efficiency for all 123 firms. This shows
that the correlated error components have an effect on
cost efficiency estimates which is evident from the
declining sample means.

This paper presents the early developments of the SFM.
It discusses the development of SFM with correlated
error components developed so far. The modelling of

SFM with correlated error components can be classified
in three different approaches. Among these approaches
DSA assumes a suitable joint distribution function of
the error components like the truncated bivariate normal
distribution (Bandyopadhyay and Das, 2006; Pal and
Sengupta, 1999). In CMA the joint distribution function
of the error components can be obtained by combining
the marginal distribution of the inefficiency with the
conditional distribution of the random noise given the
inefficiency (Pal, 2004). In CA, joint distribution function
of the error components can be obtained by combining
the marginal distributions of noise and inefficiency
through a copula function (Smith, 2008). The copula
approach is the most attractive one as a variety of
different models can be derived changing the marginal
distribution of inefficiency and/or copula function.

In addition to further developments of this model, there
are a number of other areas of potential research. These
include extending the model with an upper bound to
inefficiency or a lower bound to the efficiency in a cross-
sectional correlated error components context as
proposed by Almanidis et al. (2011) for stochastic frontier
model with independent error components. Moreover,
in these limited study of correlated error components
SFM, heteroskedasticity in error components were not
tried out. The heteroskedasticity problem is severe in
SFM and there have been a number of studies taking
heteroskedastic inefficiency in standard SFM structure.
This can be extended to correlated error components
SFM. The distribution of composite error become more
complex in nature under SFM with correlated error
components and different estimation procedures should
be carried out for comparison.

Selected Features Cost Efficiency

Product DSA CMA Copula

Mean 0.8579 0.8349 0.8468 0.8435

Std. Dev. 0.0656 0.0696 0.0687 0.0731

Minimum 0.6532 0.6279 0.5816 0.5622

Maximum 0.9844 0.9653 0.9548 0.9523






