
09IMJ

Online Portfolio Selection using a new stochastic 
Multi-Armed Bandit Algorithm

Boby Chaitanya Villari and Mohammed Shahid Abdulla 1* 2

1*

2

Doctoral Student, IT & Systems Area, Indian Institute of Management Kozhikode, Kerala, India
Associate Professor, IT & Systems Area, Indian Institute of Management Kozhikode, Kerala, India

Abstract

Keywords:

Online Portfolio Selection Problem is a sequential decision-making problem where a decision-maker, using the 
information on assets available till that time period, repetitively selects a portfolio over available assets maximizing a 
long-term return that must be calculated at the end of each time period. Typically, multiple assets need to be ‘explored’ 
and a profit maximizing asset be ‘exploited’, hence this problem falls into explore-exploit class of Machine Learning based 
decision-making problems. Multi-Armed Bandit algorithms suit well to such explore-exploit scenarios, and there are 
instances in extant literature where these algorithms were applied to the same. In this work, we employ a newly-proposed 
Multi-Armed Bandit algorithm named effSAMWMIX to solve a naïve portfolio selection problem which is a variant of 
Online Portfolio Selection problem. In a naive portfolio problem, all the weight in resources for a time period is invested in 
a single asset. We compare the performance of effSAMWMIX vis-a-vis other Multi-Armed Bandit algorithms such as KL-
UCB, Thompson sampling as also the benchmark Buy & Hold strategy. We tested the algorithms on real-world market 
datasets (the Fama-French FF48, FF100 and ETF139) as well as simulated datasets based on parameters drawn from real-
world indices. We report our results where effSAMWMIX has achieved better cumulative wealth and Sharpe Ratio when 
used as a naive portfolio algorithm.

 Online Portfolio Selection Problem, Multi-Armed Bandit, Geometric Brownian Motion, effSAMWMIX, KL-
UCB, Thomson Sampling, Naive Bandit Portfolio

1. Introduction

Decision making under uncertainty has always been a 
challenge - so much so in the case of Online Portfolio 
Selection Problem (OPSP). An Online Portfolio Selection 
Problem (OPSP) (Borodin & El-Yaniv, 2005; Dannoura & 
Sakurai, 1998; Fiat, 1998; Li & Hoi, 2014; Mohr & Schmidt, 
2013; Schmidt, Mohr, & Kersch, 2010) is a sequential 
decision-making problem, where the decision-maker 
(Agent henceforth) must select a portfolio given a set of 
assets, with an aim to maximize a long-term return or 
reward. OPSP often encounters great deals of uncertainty 
due to the changing economic and political environments 
(Kumar & Garg, 2012; Merton, 1969). The rapid availability 
of price information, especially in Internet-based modern-
day economies and indices, creates the need for fast 
portfolio selection algorithms based on the available albeit 

limited information. OPSP could require simultaneous 
optimization and the best asset (choice) identification.  
OPSP thus requires optimization of a suitable investment 
metric at every purchase decision time to identify the best 
choice of an asset to invest in.

In solving any Portfolio Selection Problem (PSP), the 
investor decides on a strategy to allocate the available (but 
finite) wealth among the available choice of assets. Every 
asset is a diverse investment opportunity and the 
realization of the asset allocation strategy builds a 
portfolio. An asset is termed risky if the prices of the asset 
are uncertain and such riskiness needs to be incorporated 
into the portfolio allocation process. The time between any 
two portfolio allocation decisions is called a period. If there 
is only one decision during the whole investment period, it 
is called a Single-Period PSP. A multi-period PSP requires 
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sequential decision-making over the time horizon of 
investment where the investor needs to stay very actively 
and thus is proposed as an online decision-making 
problem. Investor's role, during the decision making, is to 
optimize an objective function, which could be the Return 
on Investment (RoI) or Risk of losing wealth (Risk) or a 
combination of both (Risk & Return). Thus, portfolio 
decision making could also involve the management of 
Risk and maximize the RoI. The following section briefly 
discusses the OPSP and introduces a Machine Learning 
(ML) perspective of the OPSP problem.

Extant literature addresses OPSP primarily in two ways. 
The first one considers risk management to be factored into 
the objective function whose performance measure is 
quantified by Cumulative Wealth (CW). CW is the terminal 
wealth obtained from the portfolio at the end of a 
multiperiod investment horizon (Li & Hoi, 2014). The 
objective function considers the net risk of the asset choice 
decisions with respect to the CW that is sought to be 
maximized (e.g. maximize the Sharpe Ratio).  Thus, this 
closed-form objective function technique operates based 
on this innate risk-based decision to measure the quality of 
its performance. Such performance measures are seen in 
seminal work such as (Markowitz, 1952; Mossin, 1966) and 
the more recent (Lisi, 2011; Rockafellar & Uryasev, 2000). 
These ideas are characterized by building statistical 
models of the asset prices in the market. The input to these 
statistical models requires a forecasting model in the form 
of an equation (DeMiguel, Martín-Utrera, & Nogales, 
2015). The forecasting model, in turn, requires a calibration 
based on historical data of asset prices or market 
capitalization data (Fama & French, 1992).

The second way to address OPSP is based on utilizing the 
modern-day computing infrastructure along with 
intelligent ML techniques that include Neural Networks or 
RL Algorithms (Shen, Wang, Jiang, & Zha, 2015). ML 
algorithms are solely based on the empirical observations 
motivated by dynamic rise and fall of the asset prices. 
Algorithms (or Strategies) like Follow-the-Winner 
(Agarwal, Hazan, Kale, & Schapire, 2006; Li & Hoi, 2014), 
Follow-the-Loser (Li & Hoi, 2012) etc., are a couple of those 
which make use of such dynamic price changes. In brief, an 
ML Algorithm's approach to OPSP is to concretely explore 
the available information of past asset prices and based on 

its indigenous technique, provide a suggestion as to how 
the portfolio allocation be done for the next period. The 
algorithm typically intends to maximize the cumulative 
wealth at the end of the multi-period investment horizon.

In this research work, we propose and demonstrate a 
version of effSAMWMIX (proposed in our working paper 
(Villari & Abdulla, 2017)) referred henceforth as NBP-
effSAMWMIX. Using this NBP-effSAMWMIX, we build a 
Naive Bandit Portfolio (NBP) algorithm like (Shen et al., 
2015) and compare the same with NBPs that implement 
existing Stochastic Multi- Armed Bandits (SMAB) like 
UCB1 (Auer & Ortner, 2010), KL-UCB (Garivier & Cappé, 
2011) and Thompson Sampling (Agrawal & Goyal, 2012; 
Kaufmann, Korda, & Munos, 2012; Thompson, 1933). We 
address the NBP versions of UCB1, KL-UCB and 
Thompson Sampling algorithms as NBP-UCB1, NBP-
KLUCB and NBP-TS respectively. In the following sections 
we review SMAB algorithms (referred as SMABs) and 
describe how we constructed an NBP algorithm using such 
SMABs. To analyze the performance of these OPSP 
strategies, we implemented the proposed NBP-
effSAMWMIX algorithm on a synthetic data set obtained 
by simulating stock prices using Geometric Brownian 
Motion (GBM) (Marathe & Ryan, 2005). We followed these 
with similar experiments on real-world market data 
(standard datasets) obtained from sources reported in 
literature (Bruni, Cesarone, Scozzari, & Tardella, 2016). Li 
& Hoi compared the performance of ML based OPSP 
algorithms against 'Buy & Hold' strategy which is a 
benchmark strategy (Li & Hoi, 2014). We also, in this work, 
compared the performance of above mentioned SMAB 
algorithms with that of 'Buy & Hold' strategy in order to 
validate these ML algorithms against a baseline strategy.

A Multi-Armed Bandit (MAB) problem is a sequential 
decision-making problem which spans over iterations of 
decision-making horizon H, with decision made at indices 
t 1,2,...,H}. In each round (or iteration) t the decision 
maker chooses an action a  at from among a set of K fixed 
action choices that are available and obtains a noisy reward 
X   which is always bounded by [0,1]. In MAB terminology 

2.1 Stochastic Multi-Armed Bandit (SMAB) problem

2. Stochastic Multi-Armed Bandits & The Naive 
Bandit Portfolio Algorithm
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the words Choice, Action and Arm are used alternatively. 
Here X is the reward obtained by the MAB algorithm for 
choosing arm a in iteration t. The act of choosing an action is 
called pulling an arm as each available choice is an arm for 
a Multi-armed Bandit. The choice of which ‘arm’ to ‘pull’ is 
based on a goodness function of each arm, that is also 
updated for each arm as t proceeds towards H. The 
cumulative reward of a MAB algorithm is thus given by

where     is the chosen action in iteration t. Of all the K 
action choices, say the choice    that could give the best 
possible reward is known (somehow, say through an 
oracle policy). We denote the reward obtained by pulling 
this arm to be    at any iteration t, thus the maximum 
expected reward for this oracle policy is

The objective is to maximize the cumulative reward  and 
obtain a value as close to the maximum expected reward O 
as possible. Thus a MAB objective function tries to 
minimize the Regret                  , which is the difference 
between the highest possible expected reward and the 
expected reward obtained by the algorithm (Lai & Robbins, 
1985). Any MAB operates under certain assumptions on 
reward distributions {Xta}. For an SMAB, the rewards of 
each arm a 1,2...,K} accrue with a probability 
distribution 

                 

C

to the SMAB. The rewards          from arm a are assumed to 
be independent and identically distributed (i.i.d) across the 
horizon of decision-making iterations i.e., 1  t  H and are 
independent of reward distributions of other arms. There 
are a few other MAB settings like the adversarial MAB 
(Auer, Cesa-Bianchi, Freund, & Schapire, 1995) where the 
environment chooses the rewards to minimize the C of the 
algorithm, however we deal with SMABs where the 
rewards follow the i.i.d. assumption stated above. This 
limitation of reward being bounded between [0,1] is a 
requirement for applying SMAB algorithms. In real-world 
scenario where the stock returns could be any number 

between  [- , ], the returns are normalized to be between 
[0,1] without losing any information on the same. 

A Naive Bandit Portfolio algorithm uses an SMAB as a 
decision-making engine. We take the term ‘naïve’ from 
(Shen, Wang, & Ma, 2014), since the algorithm does not 
decorrelate (or take any decision based on) any possible 
correlations between the K assets. The inputs to the SMAB 
are the time horizon H, number of available arms K (where 
each arm represents an asset), the time period between 

week for weekly returns. The random variable    is the 
reward obtained when an asset a is chosen in decision 
period t and W  is the cumulative wealth obtained until the 
iteration t. We explain later the precise form that the return 
X   takes, but currently we assume that asset a has a price 
process                  Here,       is the price of an asset a at 
iteration t. Then the gross return on asset a in iteration t is 
denoted by      and is obtained as              .  The gross 
returns vector at t over the time for a portfolio with unit 
investment in each of the K assets can be written                 

represents the prices of all available assets at time iteration t 
while 1<t<H as mentioned before. In a typical scenario 
where prices are being simulated using GBM,     has all 
elements such that  

The portfolio investment decision made is determining of 
weights proportionate to which investment will be made in 
K assets. Thus, the weights vector required at time t is 
represented as                                 The  element of  
vector,     , represents the proportion of the available capital 
invested in asset a. This               is determined by the SMAB 

i.e., . The Cumulative Wealth (is indicated in 
equations by) W , which is the realized wealth at the end of 
time horizon H, is calculated as shown below

a t
a

2.2 The Naive Bandit Portfolio algorithm

t

t

t 

H

th th
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The      to be used in the SMAB algorithm is the Sharpe 
Ratio of past returns   . However, here a parameter 
indicating the moving-window setting is used in (Shen et 
al., 2014). This moving-window is the number of periods of 
data, prior to the current decision-making period, the 
algorithm should consider while calculating       . Thus, for 
an NBP, the true return for an asset a in iteration t is given  
as                 where

                   before t. For example, when =100 ,  µ_102^a 
(100) is the mean return of past 100 periods before the 
period t=102. Similarly,            , is the standard deviation of 

time periods is taken in to consideration for calculating S  . 
As mentioned previously, for an SMAB algorithm to 
operate, an assumption that the reward S   [0,1] is 
necessary. To obtain S  in [0, 1], we normalize the 
S    based on data for every asset a in period t as given 
below.

S    is given as input to the NBP algorithm (see Algorithm 
1). From the NBP Algorithm 1, notice that an SMAB is 
implemented to compute the weights vector for any 

performance of the proposed NBP-effSAMWMIX with 
analogous SMAB-based NBP-UCB1, NBP-KLUCB, and 
NBP-TS algorithms - where the kernels are different bandit 
algorithms. The functioning of the NBP versions of each of 
these algorithms is presented below.

UCB1 is a first-generation SMAB algorithm that updates 
both exploration and exploitation components, to store 
them additively in a UCB parameter (Auer, Cesa-Bianchi, 
& Fischer, 2002). UCB here is an acronym for Upper 

Confidence Bound. The following UCB1 parameter is 
updated in every iteration for every arm (asset)

where      is the mean of the observed (normalized) Sharpe 
Ratios of arm (asset) a until iteration t, at the instances that 
arm a has been pulled. Also, N  (a)  is the number of times 
arm a has been played until iteration t. To explore the 
rewards obtained if any arm is pulled, UCB1 allows 
mandates all arms are pulled at least once. Thus, the 
minimum value of N  (a) will be 1. In the context of this 
work, the Sharpe Ratio        which is the normalized risk-
adjusted returns from the asset. The asset to be invested in 
at iteration t is calculated by

Followed by updates                                            and   

                - sample empirical 
mean        is updated with the new sample        .   While 

      represents the exploitation component, the term 

              is the exploration bonus adjusting for 

have not been tried out enough. UCB1 captures the 
principle of “optimism under uncertainty”, with the 
parameters getting updated simultaneously with 
knowledge related to both exploration and exploitation. 
Note here that though     is analogous to reward in this 
MAB, it is not i.i.d (since there is dependence on other 
assets due to normalization). However, relaxing the i.i.d. 
assumption only entails loss of certain properties like 
logarithmic regret, and doesn't render a MAB unsuitable 
for OPSP. With other details specific to this OPSP, the NBP-
UCB1 is written as Algorithm (1).2.3 NBP-UCB1 algorithm

t

t

arms that
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2.4 NBP-KLUCB algorithm

KL-UCB is proposed in (Garivier & Cappé, 2011), wherein 
KL stands for Kullback-Leibler divergence, an information 
theoretic measure of how well-sampled an empirical mean 
is with respect to other empirical means. It differs from 
UCB1 in the exploration bonus term (analogous to

             ) above) which is derived by employing KL

-divergence. KL-UCB is reported to possess improved 

regret bounds where the exploration term incorporates the 
distance between estimated reward distributions for the 
arms when calculating the UCB parameter. The NBP-
KLUCB that employs KL-UCB as its decision engine as 
given in Algorithm (2). Notice in NBP-KLUCB that each 
iteration involves an optimization problem (marked as 
equation) and that this is solved by gradient descent 
algorithm using a heuristic in (Garivier & Cappé, 2011).
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2.5   NBP-TS (Thompson Sampling) algorithm

Thompson Sampling (TS) was proposed within 
(Thompson, 1933) in 1933 but remained less popular 
compared to other MAB algorithms for the lack of proofs 
on the regret bounds. The empirical performance of TS is 
reported to be better than UCB  (Gopalan, Mannor, & 
Mansour, 2014) and is considered to be a competent 

algorithm owing to its practical usability (Russo & Van 
Roy, 2016). The proof for logarithmic regret in the 
Thompson sampling SMAB, under typical conditions, has 
come only recently (Agrawal & Goyal, 2012; Kaufmann et 
al., 2012). Hence, we compared the performance of NBP-TS 
with NBP-effSAMWMIX in this work. The NBP-TS that 
employs TS as its decision engine is given in Algorithm (3).

2.6 NBP-effSAMWMIX algorithm

The algorithm Efficient SAMWMIX (or effSAMWMIX) 
differs from UCB1 or KL-UCB since it avoids searching for 
a maximum among K values, as described in (Villari & 
Abdulla, 2017). Instead, it picks a ‘soft maximum’ using a 
Boltzmann Exploration structure, but with tailored step 
sizes as the iteration t approaches the total horizon H as 
indicated by  t H. In each t, effSAMWMIX calculates a 
pull probability vector      over the K arms and pulls one of 
these arms according the probability mass function in . 

This vector is then updated with the learning the 
iteration t, notably based on the term        noticed at 
iteration t. The best arm   would be such that the 
probability of pulling the best arm is as close to 1 as possible 

                 , while for all other arms indicated by a, the 

 of pulling (choosing) the arm           . The 
update equation for      is given in equation (8)
probability
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Here,                                                is the indicator function if                 . It is to be noted here that the difference between

empirical means of the type     in the previous algorithms UCB1, KL-UCB and TS, and the quantity     here. The 
effSAMWMIX algorithm does not depend on inequalities on empirical means (e.g. Chernoff Bound, Hoeffding Bound) for 
its proof of logarithmic regret, whereas the other algorithms do. The learning component above is the step-size      and the
inverse temperature parameter      is given in equation (9) and (10).

Note that d  in equation (9) is obtained by a heuristic that must be iteratively calculated rather than obtained as input. 
Further, the term d is a negligibly small quantity                            ,  which should satisfy the condition that 

t

, where                                      (using notation from 2.1). The NBP-effSAMWMIX that employs effSAMWMIX 
(Villari & Abdulla, 2017) as its decision engine is as given in Algorithm (4). In equation (9) and equation (10), d is a pre-set 
small value while d  is computed at each iteration t using an iterative heuristic as given in Algorithm 4. The usage of the 
computed d  obtains a tighter and more accurate bound on regret of effSAMWMIX compared to the base algorithm 
SAMWMIX (Abdulla & Bhatnagar, 2016).

t

t
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3 Experiments

We conducted the experiments on both simulated datasets 
and real-world datasets. The simulated datasets are 
synthesized using Geometric Brownian Motion, with 
requisite mean µ and standard deviation parameters 
obtained from actual time series. 

Geometric Brownian Motion (GBM) is also known as 
Wiener Process in which the logarithm of a quantity that 
varies at random will follow a Brownian Motion (Wilmott, 
2000; Wilmott, 2013). GBM is formally a mathematical 
modeling technique that is often used to model short-term 
stock price movements (Ladde & Wu, 2009). Since the stock 
price movement is often unpredictable the GBM's random 
walk model tends to predict the stock prices with 
reasonable accuracy (Fama, 1995). These suggestions have 
been validated recently to a fair extent by work such as 
(Reddy & Clinton, 2016). Our work utilizes the GBM 
technique to build a synthetic dataset to test the 

performance of the NBP algorithm that utilizes 
effSAMWMIX, UCB1, KL-UCB and TS as the SMAB engine 
for the NBP.

The GBM data set is generated using the daily closing 

GBM model. If the price of stock at time 0 (indicated by t  ) is 
l Brownian process X  is available 

in 11 (Ladde & Wu, 2009; Marathe & Ryan, 2005).

For existing time series obtained from databases, the 
returns at discrete time step t, for each asset a, are 
calculated using the following equation (12)

3.1 Stock prediction on Simulated Geometric Brownian 
Motion Datasets

0

0 t

t 
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The performance of the NBP algorithms are compared against both simulations and real-world benchmark datasets as 
explained in the following sections.
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Where        is the closing price of the asset on day (period) t. 
If H is the total number of periods for which the returns are 
computed, then the mean return      is calculated as follows

Also, an estimate standard deviation of all the returns ˆ is 
calculated as given in 14 with the Sharpe Ratio (needed in 
each experiment) being              .

In each experiment, from the S&P 500 Stock data set (Bruni 
et al., 2016), we have randomly picked K stocks from the 
same so that the SMABs will have K arms (assets) to choose 
from. In the following experiments we take K = 5 and K = 15 

to generate two independent GBM datasets. Each of the 
stocks have the periodic closing prices from November 
2004 to April 2016. Note that the purpose of using S&P 500 
Stock data set is only to obtain realistic values of µ and 
that the GBM simulated data could represent a near 
realistic scenario.

Our experiments report the average results over multiple 
runs to nullify any outlier effect of extremely favorable or 
unfavorable results. Using each simulated data set, we run 
each of the NBP algorithms for obtaining the terminal 
cumulative wealth. We conduct 100 such experiments 
where each algorithm runs and report the average of these 
returns.

This newly generated stock closing price data will now be 
the data set on which the NBP's performance is evaluated 
(when the NBP uses a different SMAB for decision-making 
process). The naming convention for the GBM simulated 
portfolio data set with 5 assets i.e., K = 5 is GBM05 and that 
with 15 assets i.e., K = 15 is GBM15. The results of the 
experiments on GBM05 and GBM15 datasets are given in 
Table 1, the horizon H employed for simulation was 632 

Boby Chaitanya Villari & Mohammed Shahid Abdulla

Table 1: Terminal Cumulative Wealth on GBM Datasets

Cumulative Wealth (per unit $) 

Dataset Name Market Buy NBP-UCB1 NBP-KLUCB NBP-TS NBP-effSAMWMIX 

GBM05 Dataset

GBM15 Dataset

& Hold

1.1736 1.3789 0.8623 1.5167 1.6213

1.2881 1.4024 1.5597 1.7045 1.7867

NBP-effSAMWMIX performed better than when NBP-
UCB1, NBP-KLUCB, NBP-TS. Also, NBP-effSAMWMIX 
has acquired a better CW than the Buy & Hold strategy, 
wherein all 51 of resource is assigned to each of the 5 stocks 
throughout the iterating time horizon H. Results are 
similarly favorable for NBP-effSAMWMIX when 
simulated portfolio consisted of 15 assets. The terminal 
cumulative wealth acquired per a unit investment for 
benchmark datasets is shown in Table 3.

We choose benchmark datasets from (Bruni et al., 2016) and 

(Li, Sahoo, & Hoi, 2016) where the datasets are validated 
for the comparative performance of portfolio selection 
models. These datasets are generated using real-world 
price values obtained from major stock markets. They are 
reported to contain error-free (cleaned data) of weekly 
return values, which are adjusted for dividends and stock 
splits. These publicly available datasets help in an 
unbiased comparison of the different NBP-SMAB portfolio 
selection strategies that are tested in this work. We chose 
these datasets to get a variety of data in terms of region, 
market type, the number of assets and the number of 
periods. For example, MSCI measures the equity market 

3.2 Stock prediction on real-world benchmark datasets
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performance of global emerging markets and DJIA gives 
the stock market data from the USA, which is a developed 
economy. Of these real-world databases, DJIA,TSE and 
MSCI are considered for evaluation in OLPS tool box for 
portfolio selection which is a pioneering work on strategies 
for portfolio selection problem (Li et al., 2016). 
NASDAQ100, which is a weekly returns data, is made 

publicly available by (Bruni et al., 2016) for evaluation of 
strategies. on In Table 2, we provide the details of the
datasets we considered for this work. These datasets help 
us comprehensively evaluate the stock prediction 
algorithms on variety of data i.e. data on daily returns, 
weekly returns, data from developed economy and on data 
from emerging markets.

Table 2: Summary of the benchmark datasets from real markets

Dataset Market Region Time Frame # Periods # Assets

DJIA  (Li et al., 2016) Stock USA January 14, 2001 -January 14, 2003  507 30

TSE (Li et al., 2016) Stock CANADA January 4 ,1994-December 31,1998 1259 88

NASDAQ100
(Bruni et al., 2016)

MSCI (Li et al., 2016) Index Global January 14, 2001 -January 14, 2003 507 30

Stock USA June 2002 -April 2016 596 82

The abbreviations of each of these datasets is briefly 
clarified as follows

• DJIA: Dow Jones Industrial Average Data

• TSE: Toronto Stock Exchange Data

• NASDAQ100: Nasdaq Inc. Stock Exchange data 
consisting of weekly returns data for the time between 
June,2002 and April,2016

• MSCI: Morgan Stanley Capital International (emerging 
markets)

In Table 3, we report the terminal cumulative wealth 
achieved by each of these algorithms over the four-
benchmark datasets  ment ioned above .  NBP-

effSAMWMIX has achieved the highest cumulative wealth 
when compared to other NBP algorithms. Except in the 
case of NASDAQ100 data set, NBP-effSAMWMIX has 
performed better than the Market Buy & Hold strategy as 
well. On DJIA and TSE datasets, NBP-effSAMWMIX has 
performed similar to albeit slightly better than NBP-TS. 
However, it has distinguishably better performance on 
MSCI data set. On the NASDAQ100 data set, the Market 
Buy & Hold strategy is a clear winner from the early 
investment periods and none of the NBP algorithms could 
match its performance. Except for this case, NBP- 
effSAMWMIX achieved the highest wealth level in all the 
datasets including the simulated GBM data sets.

Boby Chaitanya Villari & Mohammed Shahid Abdulla

Table 3: Terminal Cumulative Wealth on Benchmark Datasets

Cumulative Wealth (per unit $)

Dataset Name Market Buy NBP-UCB1 NBP-KLUCB NBP-TS NBP-effSAMWMIX 

DJIA

TSE

NASDAQ100

MSCI

& Hold

0.85 0.48 0.93 0.8 0.96

1.58 1.96 1.85 2.02 2.15

5.31 1.85 4.06 2.92 4.38

0.96 1 0.92 1.06 1.24
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Since multiple experiments are conducted, we also report a 
technique to use the Sharpe Ratio (SR) with the p-values 
over the investment period to infer the best-performing 
algorithm. The SR values indicate the risk-adjusted returns 
for the investment periods. The p-values are required as it 
is important to test whether the risk-adjusted returns are 
drawn from the same distribution for two-investment 
strategies. It is known that if the risk is higher, the peak 
returns could also be higher. Thus, in order to compare the 
if an OPSP is better than another, we tested for the 
similarity of SRs in distribution. To compute the p-values 
for the case of non-i.i.d returns, we adopted the 
Studentized circular block bootstrapping technique 
(Ledoit & Wolf, 2008; Shen et al., 2015). The essence of 

circular block bootstrapping technique is that it uses a 
number of bootstrap repetitions represented by M and a 
input block size b which is used to resample new blocks of 
data pairs from the observed pairs with replacement. 
Following the testing parameters reported in (Shen et al., 
2015), we used M = 1000 and b = 5 . These p-values are used 
to further quantify the statistical significance of the 
difference in SR between the two comparing portfolios. 
The Null hypothesis (H0) is that the Shape Ratios of the 
portfolios in comparison have the same mean.

For the results shown in Table 4, we set the Market Buy & 
Hold strategy as the benchmark with 1000 bootstrap 
samples at 95% significance level and with block size 5.

Table 4: Results on Benchmark Datasets - Terminal Sharpe Ratios (and Corresponding P-Values

Boby Chaitanya Villari & Mohammed Shahid Abdulla

Note: The p-values provided are reported in comparison with Market Buy & Hold Strategy

Further in the following paragraphs, we explain with Table 4, for a better comprehension of how NBP-effSAMWMIX 
exhibits a performance which is better than others and if not, is at least as good as the best performer. For example, the most 
basic component of Toronto Stock Exchange (TSE), which is presented below for easier reading.

Datasets  Market Buy NBP-UCB NBP-KLUCB NBP-TS NBP
effSAMWMIX 

DJIA 

 

TSE 

 

& Hold -

NASDAQ100 

 

MSCI 

 

Sharpe Ratios 64.4551 61.837 55.2489 65.1978 58.1901

p-values 1 0.4765 0.001 0.8751 0.4476

Sharpe Ratios 123.6978 96.5608 91.7642 148.3123 152.0979

p-values 1 0.045 0.003 0.001 0.001

Sharpe Ratios 32.0086 32.2987 27.8164 38.4079 36.0387

p-values 1 0.8931 0.015 0.001 0.001

Sharpe Ratios 63.6745 79.4278 58.6742 71.801 73.6678

p-values 1 0.001 0.001 0.002 0.012

Table 5: TSE Data set: Terminal Cumulative Wealth, Sharpe Ratios and p-values

Datasets  Market Buy NBP-UCB NBP-KLUCB NBP-TS NBP
effSAMWMIX & Hold -

TSE Cumulative Wealth (per $) 1.58 1.96 1.85 2.02 2.15

Sharpe Ratios 123.6978 96.5608 91.7642 148.3123 152.0979

p-values 1 0.045 0.003 0.001 0.001
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The Sharpe Ratios i.e. risk-adjusted returns of NBP-effSAMWMIX are the best (152.1) among the five competing 
strategies. In addition, its corresponding p-value is 0.001 < 0.05. This indicates that we can reject the hypothesis that claims 
the mean SR value of NBP-effSAMWMIX and mean SR value of Market Buy & Hold are same. Thus, NBP-effSAMWMIX 
not only has a cumulative wealth of 2.15, which is the highest but also has a higher risk-adjusted return whose distribution 
is different from that of the Market Buy & Hold Strategy. This suggests that for TSE data, NBP-effSAMWMIX performs 
better than the rest of the strategies.

Table 6: MSCI Dataset-Terminal Cumulative Wealth, Sharpe Ratios and p-values

Datasets  Market Buy NBP-UCB NBP-KLUCB NBP-TS NBP
effSAMWMIX 

 

& Hold -

MSCI

Cumulative Wealth (per $)  0.96 1 0.92 1.06 1.24

Sharpe Ratios 63.6745 79.4278 58.6742 71.801 73.6678

p-values 1 0.001 0.001 0.002 0.012

Consider the example of MSCI data where the risk-
adjusted returns of NBP-effSAMWMIX are not the best. 
Here, the SR values of NBP-UCB are higher (79.43) than 
that of NBP-effSAMWMIX (73.67). Though the SR values of 
NBP-UCB and NBP-effSAMWMIX are better than Market 
Buy & Hold strategy, since the p-values of both these are 
less than 0.05, we can infer that the risk-adjusted returns of 
both these strategies are neither better nor worse than 
Market Buy & Hold strategy. Thus, it makes sense to look at 
the cumulative wealth value to decide on the best strategy. 
NBP-effSAMWMIX, which has a CW of 1.24, is the best 
strategy for the MSCI data set. Using similar logic, NBP-
effSAMWMIX is the best performer on DJIA data set as 
well. On NASDAQ100 data set where CW obtained by 
NBP-effSAMWMIX (4.38) is less than that of Market Buy & 
Hold (5.31), the SR related p-values is 0.001. This indicates 
that the risk-adjusted returns of NBP-effSAMWMIX could 
not be from another distribution. Also, CW of NBP-
effSAMWMIX is better than the rest of the strategies (Table 
3). To comprehensively conclude the effectiveness of NBP-

effSAMWMIX over competing for NBP strategies, we 
performed the

experiments on datasets used in (Shen et al., 2015) by 
obtaining the same through personal communication. The 
details of the datasets we obtained are given in Table 7. 
Note that their reference is an Equal Weighted (EW) 
portfolio, which is not a popular strategy for industrial 
practitioners due to higher turnover and additional 
transaction costs for frequent rebalancing of portfolios 
(Lynch & Balduzzi, 2000).

Buy & Hold strategy is still popular among long term 
investors and the datasets we considered are over a 
horizon of at least a couple of years (see Table 3), our 
previous results were presented with Market Buy & Hold 
strategy as the reference. We could replicate their 
experimental results and the results we present below are 
to visualize a direct comparison with those published in the 
literature. We follow the same format as used in Shen et.al's 
work (Shen et al., 2015).
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Table 7: Description of Shen.et.al's datasets 

Dataset Time Frame # Periods # Assets 

FF48 January 01, 1963 -December 31, 2004 498 48

FF100 January 01, 1963 -December 31, 2004 498 100

ETF139 January 01, 2008 -October 30, 2012 252 139
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• Datasets are taken from (Shen et al., 2015)

• FF48, FF100: Fama & French Datasets with portfolios 
representing different industrial sectors

• ETF139: Exchange-traded funds (weekly data) from 
Yahoo! Finance

These datasets (Table 7) are publicly available but since 
Fama & French datasets are updated on a regular basis, the 
data set values get updated with time. Hence, to replicate 
and comprehensively compare the results from (Shen et al., 
2015), we utilized the same data sets obtained from the 
authors. Since we could replicate the values of Equal 
Weighted Portfolio (EW) and NBP-UCB1 on these datasets, 
we did not perform the experiments on Value Weighted 
Portfolio (VW), Minimum-Variance Portfolio (MVP) and 
Online Moving Average Reversion (MAR). Instead, we 
used the data available from that publication and 
compared it against the performance of NBP-
effSAMWMIX on the same data set. The results with the 

values of Cumulative wealth, Sharpe Ratios, and the 
corresponding p-values are given in the Tables 8 and 9 
given below. It is interesting to note that OLMAR, an 
advanced OPSP algorithm that is reported to have superior 
performance (Li & Hoi, 2012) is outperformed by 
fundamental portfolio strategies like Value-Weighted 
portfolio (VW) and Equal Weighted portfolio (EW). Since 
we are comparing NBP algorithms, on the data from the 
following, the attention is on the results of NBP-UCB1 and 
NBP-effSAMWMIX. In Table 8, OBP stands for Orthogonal 
Bandit Portfolio, MVP represents minimum-variance 
portfolio, MAR represents on-line moving average 
reversion portfolio. While EW, VW and MVP strategies are 
typical baseline strategies studied in the finance literature, 
MAR (Li & Hoi, 2014) is an advanced online portfolio 
selection strategy. It is seen (in Table 8) that on these 
datasets as well, NBP-effSAMWMIX strategy has 
delivered a better cumulative wealth than NBP-UCB1.
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Also, the p-values of their Sharpe ratios indicate that the 
risk-adjusted returns are neither worse nor better than the 
EW strategy. Being unable to reject H0 is a favorable result 
for NBP-effSAMWMIX as it could mean that risk adjusted 
returns bear a distribution with a similar mean as that of 

EW (and that of NBP-UCB1) while the cumulative wealth is 
higher than that of NBP-UCB1 in all the three datasets. 
Especially on ETF139, NBP-effSAMWMIX outperformed 
the rest of the algorithms indicating the potential 
advantage of the same.

Table 8: Cumulative Wealth obtained on Shen et.al's datasets

Dataset OBP NBP-UCB1 EW VW MVP MAR NBP-effSAMWMIX 

FF48 61.75 35.23 54.77 48.06 25.1 42.34 42.22

FF100 626.04 76.91 123.92 198.32 73.73 57.74 92.62

ETF139 1.42 1.35 1.2 1.19 1.05 1.21 2.38

Portfolio Terminal Cumulative Wealth (per $) 
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Table 9: Portfolio Sharpe ratios (%) with the significance level measured by p-values with respect to EW.

Dataset OBP NBP-UCB1 EW VW MVP MAR NBP-
effSAMWMIX

FF48 Sharpe Ratio 26.15 25.68 24.3 23.37 22.38 24.48 22.8759

p-value 0.64 0.8 1 0.22 0.72 0.93 0.1259

FF100 Sharpe Ratio 34.89 26.09 26.97 29.76 18.01 23.6 20.612

p-value 0.01 0.82 1 0 0.19 0.22 0.0529

ETF139 Sharpe Ratio 25.47 15.45 6.01 5.85 6.82 7.61 32.0148

p-value 0.05 0.04 1 0.22 0.94 0.44 0.3506

Portfolio Sharpe ratios (%) with the significance level measured by p-values 
with respect to EW. 

4 CONCLUSION
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