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Capacitated facility location-allocation problem for effluent treatment in an
industrial cluster

Abstract

We present a location-allocation problem for effluent treatment in a cluster of processing units. The problem involves

installing effluent treatment plants of appropriate capacities at suitable locations and allocating processing units to these

plants. This problem is formulated as a mixed integer non-linear programming problem with nonconvex treatment

costs, for which an exact convexification strategy is proposed. An outer approximation based branch and cut approach

is presented as an exact solution method to solve practical size instances. For solving larger instances, a hybrid

heuristic approach based on outer approximation and mixed-integer linear programming neighborhood based search

is presented.

Keywords: shared effluent management, facility location-allocation, mixed integer non-linear program, outer

approximation

1. Introduction

Many industrial units such as textile, leather, paper, food processing, etc. produce toxic effluents as a part of their man-

ufacturing processes. Worldwide countries enacted laws to restrict the dangerous contamination of surrounding land

and water bodies. India for instance, through the water prevention and control of pollution act 1974, has mandated all

processing units to treat their effluents before disposing it off to the environment. Wastewater processing is a challenge

for the medium and small scale enterprises (MSEs) in India due to the high cost of installation and maintenance of the

effluent treatment units. To solve this problem, the Government of India promotes the installation of a shared network

of common effluent treatment plants (CETP) for a group of processing units for joint wastewater management.

There are multiple advantages associated with CETPs from the perspective of MSEs. First, member firms can save on

effluent treatment costs through the economies of scale in operating a larger effluent treatment facility. Second, MSEs

may not have access to extra land within their premises to set up their effluent treatment facility. CETPs are located

at a convenient location, considering the location characteristics like terrain and spatial distribution of processing

units. This can lead to a reduction in allocation/transportation costs, which are typically a substantial percentage of

the overall cost. Lastly, the difference in effluent characteristics emanating from these firms serves to homogenize the

effluent transported to a CETP, which helps in setting up standard CETPs at common locations instead of customized

ones for every processing unit.
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The design of a network of CETPs for an industrial cluster involves many steps. The first step consists of determining

the potential locations for the installation of the CETPs. Next, the exact locations for CETP installation need to be

identified, followed by choosing the capacities of CETPs to be installed at each site. Furthermore, the processing

units to be allocated to each installed CETP needs to be determined, such that the total discharge from the allocated

processing units does not exceed the installed capacity of the corresponding CETP, at each location. At each CETP

location, the installation and treatment costs show economies of scale with increasing volumes of effluent. On the

contrary, these costs show dis-economies of scale in terms of the level of pollutant concentration. The marginal cost

of treatment of effluent goes up with the pollutant concentration, making it increasingly costly to treat the effluent.

We present a new variant of the facility location-allocation model to address the problem of designing a network of

CETPs for an industrial cluster. We present a mixed integer nonlinear programming (MINLP) formulation for the

problem. We observe that this MINLP is non-convex, since the treatment costs exhibit economies of scale w.r.t. the

volume of effluent and dis-economies w.r.t pollutant concentration. To find an exact solution approach for the model,

we first propose a convexification strategy. Next, an outer approximation based branch and cut algorithm is presented

as an exact solution approach. To solve larger instances in reasonable times, a hybrid heuristic approach based on outer

approximation and mixed integer linear programming (MILP) based neighborhood search is proposed. Computational

experiments on multiple data instances derived from a real scenario, followed by analyzing the impact of various

problem parameters on different costs and model output are presented.

In Section 2, we present a brief literature review of the location-allocation problem relevent to our context. Section 3

describes the problem formulation with a case study. Section 4 describes the solution strategies for the problem.

Computational analysis of the proposed solution methods is presented in Section 5. A multi-objective analysis of

different financial and social costs in the problem are discussed in Section 6. Finally, we conclude with remarks and

future directions.

2. Literature Review

The literature related to this work comes from two strands of ongoing work in logistics research and optimization:

facility location-allocation problems and waste management. We discuss some relevant papers in this regard below:

2.1. Facility location allocation problem

In an early presentation of location-allocation problems, Cooper (1963) discusses the numerical aspects of various

classes of these problems. Both exact and heuristic methods are analyzed. Various extensions and versions of these

problems are discussed in the literature since then. Zhou and Liu (2003) present stochastic programming models for

capacitated facility location-allocation problems. Network simplex, stochastic simulations, and genetic algorithms are
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integrated into the proposed solution approach. Capacitated facility location-allocation problems are considered as

belonging to the class of NP-hard problems. We refer to some of the recent literature on these types of problems.

Specific to applications in the field of supply chain management, Manzini and Gebennini (2008) present an MILP

formulations aimed at designing multi-period, multi-stage, and multi-commodity location-allocation problems in lo-

gistics distribution systems. Chen and Ting (2008) present a single-source capacitated facility location problem. A

hybrid algorithm combining Lagrangian heuristic and Ant Colony algorithm is proposed as an efficient solution ap-

proach. A single source facility location is a particular class of facility location problems in which each customer

is served from only one facility. Harris et al. (2014) present a capacitated facility location-allocation problem with

flexibility at the allocation level. Paper presents multi-Objective optimization with CO2 emissions and financial costs.

An evolutionary algorithm coupled with Lagrangian relaxation is presented as an efficient solution approach. Mogale

et al. (2018) present a food grains silo location-allocation model in the context of the Indian grain distribution system.

The problem is formulated as a multi-objective, multi-modal, and multi-period planning problem with dwell time. To-

tal supply chain network cost and lead-time are taken as conflicting objectives. Further, Pareto based multi-objective

algorithms are implemented as solution approaches. Baharmand et al. (2019) present a location-allocation model for

locating distribution centers in a disaster zone. Trade-offs between response times and logistics costs are considered.

Wu and Yang (2018) analyze the location decisions of Chinese manufacturing firms by integrating a flow capturing

location model with the traffic assignment model. A genetic algorithm is used to solve the model.

In other applications, Hammad et al. (2017) address a multi-objective facility location problem, concerning the location

of noise-sensitive and noise-generating facilities in urban environments. An augmented ε-constraint method is used

to handle multiple objectives, and a Benders decomposition approach is proposed to solve large instances. Liu et al.

(2019) present a bi-objective optimization model to determine the optimal temporary medical service locations and

medical service allocation plan by maximizing the number of expected survivals and minimizing the total operational

cost. Lin et al. (2019) propose a location-allocation model for a multi-classification yard location problem. An upper-

level decision involves the selection of potential yard locations with yard size and capacity, followed by the lower level

problem of determining railcar re-classification. A simulated annealing algorithm is presented as a solution approach.

In an application in the related area to the current study, Gokbayrak and Kocaman (2017) propose a continuous

location-allocation problem as a mixed integer quadratically constrained problem. Each facility has a fixed opening

cost and has to operate under coverage distance limitations. Applications are suggested in the spatial planning of water

and energy access networks. A three-stage heuristic algorithm is proposed for the problem.

2.2. Waste management

de Figueiredo and Mayerle (2008) discuss a problem of designing minimum-cost recycling network with required
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throughput to determine the optimal number and location of receiving centers along with incentive mechanisms to

stimulate the collection of used or unrecoverable products. In a logistics network design problem in waste manage-

ment, Parker et al. (2010) present an MINLP model for analyzing the economic potential and infrastructure configura-

tion designing a pathway for hydrogen production from agricultural waste and delivery to usage locations. Kim et al.

(2011) present an optimization model for the design of biomass processing network for biofuel. Zhao et al. (2016)

discuss the network design problem for a regional hazardous waste management system. The model deals with the

location of various waste facilities and determining transportation routes to the facilities. The problem is formulated

as a multi-objective MILP model, and three multi-objective optimization approaches are implemented to find good

solutions.

A class of studies deals with general waste collection mechanisms. Ramos et al. (2014) present a planning problem of

recyclable waste collection systems using a multi-product, multi-depot, vehicle routing problem aimed at minimizing

the objectives of distance and CO2 emissions. A decomposition solution approach is developed as a solution approach

for a real case study. Miranda et al. (2015) address the problem of designing a household waste collection system for

insular areas. Mixed integer programming model integrates site selection, scheduling, and routing.

Investigation of the research related to MINLPs involving power functions, Wang et al. (2013) propose quadratic outer

approximation approaches for solving fuel consumption rate functions in a berth allocation problem incorporating

ship fuel consumption minimization. Wang and Meng (2012) present an efficient outer-approximation method to

solve MINLP designed for achieving sailing speed optimization for container ships. Wang et al. (2015) propose a

global optimization method employing linearization, outer approximation, and range reduction techniques to solve a

discrete transportation network design model.

While the literature on location-allocation problems is extensive, the incorporation of nonconvex operational costs

within the same is sparse. To the best of our knowledge, strategic decisions involving the installation of multiple

effluent treatment facilities taking into account the nature and quantity of effluents is missing from the literature.

Our model attempts to fill this void. By integrating the aspects as mentioned above, we provide a decision-making

framework for the installation and configuration of common effluent treatment facilities. The data used, along with

our model, captures the intricacies relevant in the Indian setting. However, the model can be tweaked and extended in

other contexts.

3. Problem description and mathematical formulation

This section presents a detailed description of the CETP location-allocation problem using a case study. Tirupur is a

city located in the southern state of Tamil Nadu in India. It has a major cotton textile manufacturing cluster. A large

number of integrated and small-scale textile manufacturing units are located in and around the city. The small scale
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textile manufacturing units are primarily involved in one or multiple stages of the textile manufacturing process. One

of the essential stages of textile manufacturing is dyeing and bleaching. It is done to impart color to the fabric. The

dyeing/bleaching process consumes large amounts of water and produces effluents. The effluent discharged from these

firms contains a lot of dissolved salts used as binding agents during the dyeing process. These salts are toxic to living

organisms and need to be neutralized before disposal. So far, eighteen CETPs have been established in Tirupur to treat

effluents coming out of the dyeing and bleaching units in the area. These cater to the needs of around 380 dyeing and

bleaching units.

Most of the dyeing and bleaching units using the CETPs are small and medium scale enterprises. They lack the

resources to set up their own individual effluent treatment plants. Hence, they cooperate with other such small-scale

units to set up CETPs. The number of processing units allocated to each CETP is different. It is primarily dependent

upon the pollutant concentration and the effluent volume discharged by the allocated processing units, and the distance

of these units from the potential CETP locations. The potential CETP locations are determined by the geography of

the area. The effluent transportation from the processing units to the assigned CETPs are carried out either through

pipelines or using water tankers designed to carry the effluents.

The CETP facility location-allocation problem deals with identifying CETPs of appropriate capacities to be installed at

most suitable locations and allocating each processing unit to exactly one installed CETP. The objective is to minimize

the cost of CETP installation, transportation, and treatment cost of the effluent. We consider discrete capacity options

for CETP installation at each location. The installation cost of a CETP depends on its capacity. The effluent treatment

cost is a function of effluent volume and pollutant concentration in the effluent.

We now present the all notations and symbols used in the model are described in the following subsection, followed

by the mathematical model of the problem.

3.1. Notations

Indices

i potential CETP location

j processing unit

t CETP capacity type

Sets

I set of all potential CETP locations

T set of all CETP capacity types
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F set of all processing units

Decision variables

yti 1, if CETP of capacity type t is installed at location i, 0 otherwise

z ji 1, if processing unit j is allocated to CETP at location i, 0 otherwise

xi volume of effluent transported to a CETP at location i

pi weight of pollutant transported to a CETP at location i

Parameters

CF
ti fixed cost of installing a CETP of capacity t at a potential CETP location i

CA
ji transportation cost when processing unit j is allocated to a CETP at location i.

CAPt treatment capacity of CETP capacity type t

Fe
j effluent discharge from a processing unit j

F p
j pollutant concentration of effluent from a processing unit j

K constant representing the multiplier of the effluent treatment cost function

q constant representing the exponent of volume of effluent treated in a CETP

r constant representing the exponent of pollutant weight treated in a CETP

3.2. MINLP model

The problem involves which potential CETP locations within the set I to be selected for installation and the capacity

type t of CETP to be installed at each selected location i. Each installed location caters to a subset of processing

units in the cluster. The overall system costs consist of the installation cost of the CETPs, the allocation cost between

processing units and CETPs, and cost of treatment of effluent through the CETPs. The allocation cost comprises of the

effluent transportation cost between processing units and respective CETPs. Figure 1 illustrates the problem structure

using a small example.
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Figure 1: An illustrative example of the CETP location-allocation problem

Next, we present the mathematical formulation of the problem.

P: Min Z =
∑
i∈I

∑
t∈T

CF
ti yti +

∑
i∈I

∑
j∈F

CA
jiz ji +

∑
i∈I

Kxq
i pr

i (1)

s.t.
∑
i∈I

z ji = 1 ∀ j ∈ F (2)

∑
t∈T

yti ≤ 1 ∀i ∈ I (3)

z ji ≤
∑
t∈T

yti ∀i ∈ I, j ∈ F (4)

xi =
∑
j∈F

Fe
jz ji ∀i ∈ I (5)

∑
j∈F

Fe
jz ji ≤

∑
t∈T

CAPtyti ∀i ∈ I (6)

pi =
∑
j∈F

Fe
j F

p
j z ji ∀i ∈ I (7)

xi, pi ≥ 0 ∀i ∈ I (8)

z ji ∈ {0, 1} ∀i ∈ I, j ∈ F (9)

yti ∈ {0, 1} ∀i ∈ I, t ∈ T (10)

The objective function (1) minimizes the total cost of installation of CETPs, the allocation cost of processing units to

the installed CETPs, and the treatment cost of effluent through the CETPs. The last nonlinear objective function term
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is derived from previous studies on CETP design (Mundle et al., 1995) and is elaborated in subsection 3.3. Constraints

(2) ensure that each processing unit is allocated to exactly one CETP. Constraints (3) ensure that at most, one CETP is

installed at each potential location. Constraints (4) do not allow a processing unit to be allocated to a potential CETP

location unless one is installed there. Constraints (5) ensure that the total effluent transported to a CETP must be

equal to the discharge from the processing units allocated to it. Constraints (6) are the capacity constraints for effluent

treatment at each CETP. Finally, constraints (7) calculate the total pollutant weight from all allocated processing units

transported to a CETP. Constraints (8) impose non-negativity condition of xi and pi variables. Finally, the constraints

(9) and (10) restrict the z ji and yti variables to take only binary (0,1) values.

3.3. Functional characteristics of the treatment cost

In a technical note on CETP design, Mundle et al. (1995) propose that the treatment cost in a CETP is a nonlinear

function of the total volume and the concentration of the effluent. The functional form is presented in the last term

of the objective function (1). Here CT
i is the effluent treatment cost at CETP i, ci is the concentration of the effluent,

and s is the exponent of effluent volume treated at i, xi. The treatment cost shows the economy of scale in terms of xi

and dis-economy of scale in terms of ci. We derive the expression for treatment cost in terms of effluent volume and

pollutant weight from the existing relationship between effluent volume and concentration, as concentration itself is a

function of effluent volume.

CT
i = Kxs

i cr
i = Kxs

i

(
pi

xi

)r

= Kx(s−r)
i pr

i = Kxq
i pr

i (11)

Proposition 1. Treatment cost function in equation (11) is non-convex when there exists economies of scale w.r.t.

effluent volume and dis-economies of scale w.r.t. effluent concentration.

Proof. The treatment cost function of equation (11) will have s < 1 when there exists economies of scale w.r.t. effluent

volume, and r > 1 with dis-economies of scale in terms of effluent concentration (hence s − r = q < 0). The Hessian

matrix for the above non-linear function is as follows:

H = K.

q(q − 1)xq−2
i pr

i qrxq−1
i pr−1

i

qrxq−1
i pr−1

i r(r − 1)xq
i pr−2

i

 = Kxq−2
i pr−2

i

q(q − 1)p2
i qrxi pi

qrxi pi r(r − 1)x2
i

 (12)

det(H) = Kxq
i pr

i q.r(1 − q − r) (13)

The function CT
i is convex if and only if the following conditions are satisfied:

1. det(H) is non-negative: As q < 0, this condition is satisfied when q + r ≥ 1 (i.e. s ≥ 1). Clearly, this condition

is not satisfied.

2. Diagonal elements of matrix H are non-negative:
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(a) Since q < 0, the first diagonal element is positive.

(b) Since r > 1, the second diagonal element is positive.

Since the determinant of Hessian matrix is negative, the treatment cost function as described in equation (11) is non-

convex.

The values of parameters of the nonlinear treatment cost are estimated from the values derived from real data of the

case study. Demonstrating economies of scale in effluent volume, s varies from 0.85 to 0.95. The values of the

exponent of pollutant concentration, parameter r, varies from 1.2 to 1.4.

4. Solution strategy

The non-linear terms in the objective function (1) is a non-convex bi-variate function in effluent volume and pollutant

weight. First, we implement a convexification strategy to this term. We notice that the variable xi is specified by

constraint set (5), which is an expression involving only the binary variables. Hence for convexification, we introduce

a variable wi where wi = x2
i . In terms of wi, the treatment cost at CETP location i can now be expressed as:

CT
i = Kwq/2

i pr
i where,wi = x2

i (14)

Further, we replace constraint set (5) with

wi = (
∑
j∈F

Fe
jz ji)2 ∀i ∈ I (15)

Since, z ji are binary variables, we linearize the above constraint set using the following set of constraints:

wi =

|F |−1∑
j=1

|F |∑
j′= j+1

2Fe
j F

e
j′ζi j j′ +

∑
j∈F

(Fe
j)

2z ji ∀i ∈ I (16)

ζi j j′ ≤ z ji ∀i ∈ I, j ∈ {1, 2, .., |F | − 1}, j′ ∈ { j + 1, .., |F |} (17)

ζi j j′ ≤ z j′i ∀i ∈ I, j ∈ {1, 2, .., |F | − 1}, j′ ∈ { j + 1, .., |F |} (18)

ζi j j′ ≥ z ji + z j′i − 1 ∀i ∈ I, j ∈ {1, 2, .., |F | − 1}, j′ ∈ { j + 1, .., |F |} (19)

ζi j j′ ∈ {0, 1} ∀i ∈ I, j ∈ {1, 2, .., |F | − 1}, j′ ∈ { j + 1, .., |F |} (20)

Proposition 2. Kwq/2
i pr

i is a convex function for r ∈ [1.2, 1.4], s ∈ [0.85, 0.95] and q = s − r.
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Proof. Replacing q with q/2 in equation (13), it can be seen that the determinant of Hessian matrix will be non-

negative when 1 − q/2 − r ≤ 0, i.e. q/2 + r ≥ 1 . This implies (s + r)/2 ≥ 1 or, s + r ≥ 2. Clearly, r ∈ [1.2, 1.4] and

s ∈ [0.85, 0.95] satisfy this.

Proposition 3. Constraint set (19) will be redundant at optimality for r ∈ [1.2, 1.4] and s ∈ [0.85, 0.95].

Proof. As shown above, the treatment cost given in equation (14) is a convex function for r ∈ [1.2, 1.4] and s ∈

[0.85, 0.95]. Further, the treatment cost decreases with increasing wi (since, q = s − r < 0). Moreover, for any given

value of variables yti and z ji, it can be seen from (16) that wi increases with increasing ζi j j′ . Hence, only the upper

bound ζi j j′ will be be binding at optimality (i.e the lower bound of ζi j j′ will be redundant).

Proposition 4. ζi j j′ can be relaxed as continuous and the constraint set (20) is redundant.

Proof. For a given solution yti, z ji, it is clear that ζi j j′ is upper bound by constraint sets (17) and (18). Further, as argued

in proof of Proposition 3, only the upper bound of ζi j j′ will be binding at optimality. Thus, ζi j j′ variables value will be

determined by the lower of the upper bounds given by constraint sets (17) and (18). Hence, ζi j j′ := min(z ji, z j′i) ≤ 1 .

Therefore, even if ζi j j′ is relaxed as continuous and the constraint set (20) is removed, the solution will not change.

We have transformed a non-convex MINLP to a convex MINLP. Convex problems are much easier to deal with as

compared to non-convex problems. Quoting Rockafellar (1993), “In fact the great watershed in optimization isn’t

between linearity and nonlinearity, but convexity and nonconvexity”. Additionally, some exact methods that cannot

be applied to a non-convex problem, can now be applied to our transformed problem. We next present one such exact

method that is widely applied to a convex MINLP.

4.1. Outer approximation cutting plane method

Duran and Grossmann (1986) present an outer approximation (OA) cutting plane algorithm for solving MINLPs,

where all the functions involving discrete variables are linear, and the nonlinear functions in the continuous variables

are convex in the underlying structure. The OA solution method works by decomposing the original MINLP into

a subproblem, which is a nonlinear program in continuous variables and a master problem, which is a MILP in the

discrete variable and a single continuous variable. The step by step algorithm for the OA method implemented as a

branch and cut to solve MINLPs is shown by Duran and Grossmann (1986) and Fletcher and Leyffer (1994). Shahabi

et al. (2013) demonstrate the step-by-step application of the OA algorithm to solve a robust shortest path problem.

The MINLP formulation for the CETP facility location-allocation problem (1) - (10), is separable in linear and nonlin-

ear terms. The terms involving the binary variables (yti and z ji) are linear in the formulation, and the objective function
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term estimating the treatment costs are a nonlinear function of the continuous variables (xi and pi). The original non-

convex nonlinear term is convexified using the strategy reported earlier. We show the formulations for the resulting

master problem (MP), and the sub-problem (SP) as per the OA method implemented to the given problem.

MP : minimize ZMP = µ +
∑
i∈I

∑
t∈T

CF
ti yti +

∑
i∈I

∑
j∈F

CA
jiz ji (21)

Subject to

wi − (
∑
j∈F

Fe
jz ji)2 = 0, ∀i ∈ I, (22)

µ ≥
∑
i∈I

K(wk
i )q/2(pk

i )r +
∑
i∈I

(wi − wk
i )K

q
2

(wk
i )

q
2−1(pk

i )r +
∑
i∈I

(pi − pk
i )K(wk

i )
q
2 r(pk

i )r−1, (23)

Constraints (2)-(4), (6), (7), (9), (10), (16)-(18)

wi, pi ≥ 0, ∀i ∈ I, (24)

The constraint (23) is the outer approximation cutting plane, as applied to the model. Here wk
i and pk

i are a known

pair of feasible values of the decision variables, wi and pi, respectively. At first, MP is solved to optimality without

adding the OA cutting plane. The solution to MP gives a lower bound on the optimal solution to original problem P

and gives a feasible set of values for the binary decision variables yti and z ji. The known values of the binary decision

variables are used to estimate the effluent volumes, pollutant weights, and treatment costs. The total cost calculated by

adding the MP objective with the treatment costs gives an upper bound on the objective function. We use the derived

values of continuous variables in the previous step to formulate a new cutting plane, which is then added to the MP.

This process is continued iteratively, till the gap between the lower and upper bounds reaches a target level.

The above description of OA method is a classical version, in which the MP is solved to optimality at each iteration.

As the number of successive cuts increases, it becomes increasingly difficult to solve the MP. We implement the OA

method in a branch and cut framework. In this method, the incumbent solution in the branch-and-bound search tree

is passed as known values of binary decision variables to generate a new OA cut. This is facilitated by implementing

the branch-and-cut routine using the callback function provided by commercial solvers (like Gurobi), to intervene in

the branch-and-bound tree search process. The callback function adds the OA cut directly at each node in the branch-

and-bound tree while solving the MP. Moreover, the generated OA cuts are added to the MP as lazy constraints. When
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a cut is operationalized as a lazy cut, the solver does not add all the generated cuts at each node, but performs a

feasibility check on the lazy cuts and adds only those which are infeasible. Our computational results suggest that this

implementation is faster than the classic OA implementation. Figure 2 presents a flowchart of this implementation

of the OA algorithm. The stopping criteria, as mentioned in the decision step, is the mixed integer programming gap

calculated as the ratio of the difference between the upper bound on the MILP solution and lower bound from a relaxed

LP solution to the upper bound.

Figure 2: Flowchart of outer approximation based branch-and-cut implementation

4.2. Hybrid outer approximation and MILP based neighborhood search heuristic

The OA based branch-and-cut algorithm could solve only medium-sized instances. So, to solve large-sized instances,

we present a hybrid heuristic that incorporates an MILP based neighborhood search incorporating the OA based

branch-and-cut method.

The heuristic presented here works as follows. We obtain multiple starting, feasible solutions to the problem instance.

We set up the instance as an MILP model in a commercial solver using the OA- branch and cut solution approach.

The binary decision variables are initially fixed to the values of a starting feasible solution, and the decision variable

values and the initial objective function value are recorded as the best solution. A local neighborhood search between

each pair of CETP potential locations, at least one of which is currently in the solution, is carried out using different

operators. On performing any operation, if the current solution is better than the previous known best solution, the later

is updated to the new solution. The pairwise local search is carried out with all identified starting feasible solutions,
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and the best solution is recorded for each start. The best solution found across all the different starts is reported as the

final heuristic solution. The heuristic consists of multiple procedures and sub-procedures, which are explained below.

Algorithm 1 implements the OA- based branch and cut algorithm to solve a problem instance and gives as output the

optimal objective and the optimal values of the decision variables.

Algorithm 1 MINLP solution implementation

1: procedure Function –MINLPsolve()
2: solve the MINLP using the OA branch and cut method (ref: figure 2)
3: Ob j← optimal objective function value
4: Y ′ ← set of optimal solution values of the decision variables yti for t ∈ T , i ∈ I
5: Z′ ← set of optimal solution values of the decision variables z ji for j ∈ F , i ∈ I
6: return Ob j,Y ′,Z′

7: end procedure

While conducting the pairwise search, in some steps, we do not solve the sub-problem using a commercial solver but

use simple logic to evaluate a potential improvement in solution. In such cases, we derive a known set of values for

the decision variables and estimate its objective using the Ob jEval function as described in algorithm 2.

Algorithm 2 Function evaluating the objective for know decision variable values

1: procedure Function –ObjEval(Ȳ , Z̄)
2: Ȳ ← {ȳti | t ∈ T , i ∈ I}
3: Z̄ ← {z̄ ji | j ∈ J , i ∈ I}
4: for i ∈ I do
5: x̄i ←

∑
j∈F Fe

j z̄ ji

6: p̄i ←
∑

j∈F Fe
j F

p
j z̄ ji

7: end for
8: Ob j←

∑
i∈I

∑
t∈T CF

ti ȳti +
∑

i∈I
∑

j∈F CFC
ji z̄ ji +

∑
i∈I Kx̄q

i p̄r
i

9: return Ob j
10: end procedure

Two avoid the MIP based neighborhood search heuristic getting stuck in local optima, we employ a multi-start method,

where diverse starting solutions are used. Two extreme starting feasible solution sets are obtained through procedures

explained as algorithms 3 and 4. The StartSol1 method generates a starting feasible solution with only one large CETP

installed at a heuristically determined best location. Initially, all the decision variables are initialized to zero. For each

potential CETP location, we estimate the weighted average distance, wdist
i , as a weighted average of distances of a

CETP from all the processing units, weights being the pollutant discharge through each processing unit. The location

having the minimum weighted distance is identified as ib. The largest CETP is installed at this location and all the

processing units are allocated to the CETP installed at this location. The procedure yields a Y1 and Z1 as solution

vectors for one of the starting feasible solutions.

Another starting feasible solution represented as StartSol2 represents another extreme with the smallest possible

CETPs installed at as many locations as possible. Initially, all the decision variables are initialized to zero. A de-
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Algorithm 3 Starting feasible solution with one large facility

1: procedure StartSol1
2: Y1 ← {ȳti = 0 | t ∈ T , i ∈ I}
3: Z1 ← {z̄ ji = 0 | j ∈ J , i ∈ I}
4: ib ← φ

5: wdist
i ←

∑
j∈F D jiFe

j F
p
j∑

j∈F Fe
j F

p
j

6: wmin ← mini∈I wdist
i

7: ib ← {i |wdist
i = wmin}

8: tL ← capacity of the largest CETP type
9: ȳtLib ← 1

10: for j ∈ F do
11: z̄ jib ← 1
12: end for

scending list of locations as per the weighted distance is generated as Iranked. CAPmin is a lower limit on the size of

the smallest CETP and is estimated as the ratio of the total flow through all the processing units and the number of

potential locations. In steps 6 - 11, the smallest CETP type having a capacity just greater than or equal to CAPmin

is identified. In the next step, a pollutant level weighted distance of each processing unit from a potential location is

evaluated as w ji. We start installing a CETP to each potential location as per the sequence in the Iranked set and allo-

cated as many processing units as possible, given the capacity constraint of the CETP, as per the increasing value of

w ji associated with the processing units. Once all the processing units are allocated, the algorithm terminates. Finally,

we report Y2 and Z2 as solution vectors for the second starting feasible solution.

Algorithm 7 details the steps followed in the MILP based neighborhood search heuristic. A complete pairwise neigh-

borhood search between each pair of potential CETP locations is conducted for each starting feasible solution repre-

sented by the index k. The best solution is initialized as the decision variable solution vectors, Ybest and Zbest taking

null values and best objective value Ob jbest taking a very large value represented as M. Next, a MILP instance is

created by declaring the variable vectors, Y , and Z, and freezing the values of these variables to the known values from

the starting feasible solution sets, Yk and Zk. For each pair of different potential CETP locations, i1, and i2, a local

search is carried out through a process of multiple operators. First, the CETP types, t1 and t2 currently installed at the

two locations is identified. In step 13, we check if only one of the locations has a CETP installed, we perform two

operations. First, we swap the locations by installing a CETP at the empty location and check for improvements in

objective value. The S wap operator, as explained in algorithm 5 interchanges the values of known decision variable

values corresponding to the locations i1 and i2 in the vectors Yk and Zk, represented as ȳti1 , ȳti2 , z̄ ji1 , and z̄ ji2 , across

the two locations. The updated vectors Yk and Zk are evaluated by the operator CheckU pdate described as algorithm

6. This function evaluates the objective value for the known solution vectors and compares it with the best-known

solution found so far. If there is an improvement in the solution, the best solution vectors Ybest and Zbest, and objective

value, Ob jbest are updated with the newfound improved solution. Steps 17 - 22 implement the reshuffle operator, where
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Algorithm 4 Starting feasible solution with multiple small CETPs

1: procedure StartSol2
2: Y2 ← {ȳti = 0 | t ∈ T , i ∈ I}
3: Z2 ← {z̄ ji = 0 | j ∈ J , i ∈ I}
4: Iranked ← sorted list of location i as per decreasing values of wdist

i

5: CAPmin ←

∑
j∈F Fe

j

n(I)
6: for t ∈ T do
7: if CAPt ≥ CAPmin then
8: ts ← t
9: CAPmin ← CAPt

10: quit for loop
11: end if
12: end for
13: for j ∈ F do
14: for i ∈ I do
15: w ji ← Fe

j F
p
j D ji

16: end for
17: end for
18: for i ∈ Iranked do
19: ȳtS i ← 1
20: Fw

i ← sorted list of the processing units j as per the weights w ji

21: for j ∈ Fw
i do

22: z̄ ji ← 1 till the capacity CAPtS is not violated for the given i
23: end for
24: end for

Algorithm 5 Swapping the fixed values of binary decision variables between a pair of locations

1: procedure Function Swap(Yk,Zk, i1, i2)
2: swap the values of ȳti1 and ȳti2∀t ∈ T
3: swap the values of z̄ ji1 and z̄ ji2∀ j ∈ F
4: update the vectors Yk and Zk

5: end procedure=0

Algorithm 6 Checking and updating the best solution

1: procedure Function CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
2: if Ob j1 ≤ Ob jbest then
3: Ob jbest ← Ob j1

4: Ybest ← Yk

5: Zbest ← Zk

6: end if
7: end procedure
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a sub-MILP is solved using the MINLPsolve function by unfixing the decision variables corresponding to the current

location pair. The CheckU pdate function checks and updates any improvement in solution.

In the second case, where both the locations in the current pairing are currently installed, as identified in step 24,

three operators are employed. First, the S wap operator is implemented as previously explained. Second, steps 28 - 38

implements the integration operator, which tries to combine a single CETP to handle all the processing units assigned

to both the locations at one of the locations. Next, steps 39 - 47 describe a reshuffling operator where a sub-MILP is

solved on unfixed decision variables across the location pair. Finally, the best improvement identified so far is reported.

5. Computational analysis

The two solution approaches discussed in the Section 4 have been implemented in the academic version of the com-

mercial solver Gurobi 8.1.1. with Python 2.7.10 programming language. All computational tests are performed using

a DELL Precision T5610 with Intel Xeon CPU E5-2620 v2 @ 2.10 GHz – 6 cores CPUs and 32.0 GB RAM.

5.1. Test instances

The computational analysis is done using real data estimated from the Tirupur industrial cluster. A group of 380

processing units is engaged in similar production activities and release the same type of effluent as discharge. There

are eighteen potential CETP locations, based on the terrain of the region and relative distances between different

processing units. We have considered 3, 6, and 9 capacity types of CETP for analysis. To compare the solution results

from the exact and heuristic solution approaches presented in section 4, we create smaller data sets from the original

data described here. Table 1 presents the details of all the data instances used for experimentation. The columns 2 - 4

list the number of entities in terms of the number of processing units, the number of potential CETP locations, and the

number of CETP capacity types considered, respectively.

The data related to the distances of individual processing units from each potential CETP location, effluent discharge

rates in kl/day, and level of pollutant discharge in g/kl are presented as a minimum, maximum, and average values in

table 2. Other costs and parameters considered for the model are shown in table 3.
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Algorithm 7 MILP based neighborhood search heuristic

1: procedure MILPheur
2: for k ∈ {1, 2} do
3: Ybest ← φ
4: Zbest ← φ
5: Ob jbest ← M
6: Y ← vector of decision variables yti for t ∈ T , i ∈ I
7: Z ← vector of decision variables z ji for j ∈ F , i ∈ I
8: freeze variables in Y to the derived values of Yk

9: freeze variables in Z to the derived values of Zk

10: for i1, i2 ∈ I|i1 , i2 do
11: t1 ← CETP type currently installed at i1
12: t2 ← CETP type currently installed at i2
13: if

∑
t∈T ȳti1 +

∑
t∈T ȳti2 = 1 then

14: Swap(Yk,Zk, i1, i2)
15: Ob j1 ← Ob jEval(Yk,Zk)
16: CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
17: tm ← max(t1, t2)
18: for t ∈ {1, ..., tm} do
19: unfreeze the decision variables yti1 , yti2 , z ji1 , and z ji2
20: end for
21: Ob j1 ← MINLPsolve().Ob j
22: CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
23: end if
24: if

∑
t∈T ȳti1 +

∑
t∈T ȳti2 = 2 then

25: Swap(Yk,Zk, i1, i2)
26: Ob j1 ← Ob jEval(Yk,Zk)
27: CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
28: f low12 ←

∑
j∈F Fe

j z̄ ji1 +
∑

j∈F Fe
j z̄ ji2

29: tC ← smallest CETP type with capacity greater than or equal to f low12
30: for i, i′ ∈ i1, i2|i , i′ do
31: ȳti ← 1
32:

∑
t∈T ȳti′ ← 0

33: for j ∈ F do
34: z̄ ji ← z̄ ji + z̄ ji′

35: end for
36: Ob j1 ← Ob jEval(Yk,Zk)
37: CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
38: end for
39: T r ← {t | t ∈ [1, ..tC − 1], t < {t1, t2}}
40: if T r ≥ 1 then
41: for t ∈ T r do
42: unfreeze the decision variables yti1 , yti2 , z ji1 , and z ji2
43: end for
44: Ob j1 ← MINLPsolve().Ob j
45: CheckUpdate(Ob jbest,Ybest,Zbest,Yk,Zk,Ob j1)
46: end if
47: end if
48: Report Ob jbest,Ybest,Zbest

49: end for
50: Report Ob jbest,Ybest,Zbest across all starts (k) as final heuristic solution
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Table 1: Data instances used in computational analysis

Problem entities
Instances #proc.units #cetp.locs #Cetp.types

1 20 2 3
2 20 2 6
3 20 2 9
4 30 3 3
5 30 3 6
6 30 3 9
7 40 3 3
8 40 3 6
9 40 3 9
10 50 4 3
11 50 4 6
12 50 4 9
13 60 5 3
14 60 5 6
15 60 5 9
16 80 5 3
17 80 5 6
18 80 5 9
19 100 6 3
20 100 6 6
21 100 6 9
22 150 8 3
23 150 8 6
24 150 8 9
25 200 13 3
26 200 13 6
27 200 13 9
28 380 18 3
29 380 18 6
30 380 18 9

Table 2: Data value ranges related to the processing units

Minimum Maximum Average
Distance from processing units to potential CETP locations in km 0.10 23.40 9.00
Effluent flow from the processing units in kl/day 166.96 570.70 316.01
Pollutant discharge from the processing units in g/kl 309.56 492.08 439.08

Table 3: Parameter values considered

Parameter Value
K 0.68
s 0.9
r 1.3

To estimate the CETP capacity types, we have collected primary and secondary data related to different CETP capacity

options applicable to the scenario, as presented in table 4. We use this data to develop an approximate relationship

between CETP size in terms of designed capacity (kl/day), cost of installation, and area required for installation. For
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each data instance, we calculate the total effluent volume from all the processing units and consider CETP capacity

types corresponding to that volume. For example, if the total effluent volume from all the processing units is 120,000

kl/day, we consider three types with capacities 40,000, 80,000, and 120,000 for a data instance with three types

considered and similarly for instances with six and nine CETP types.

Table 4: Installation costs and area required for multiple CETP types

CETP types Plant Size (kl/day) Capital Costs (in 100,000 INR) Land Area (m2)
1 2000 37.88 7950.5595
2 3750 29.81 10634.275
3 5400 77.02 12588.613
4 8000 83.9 15099.214
5 11000 139.53 17496.179
6 12000 97.98 18214.907
7 41725 574.04 32421.444
8 47000 307.84 34257.307
9 54000 391.16 36530.068

5.2. Computational results

The computational results from the proposed solution approaches implemented on the data sets are presented in table

5. First column lists the data instances described previously in table 1 in terms of problem elements and size. For

each instance, we present the results of both the OA-based branch and cut algorithm as well as the MILP based

neighborhood heuristic in the same row for easy comparison. Column-2 shows the number of lazy cuts added during

the MILP branch and bound process. The branch and bound search for each instance was constrained to run for a

maximum of four hours (14,400 seconds). The time shown in column-3 includes problem buildup, branch and bound

root relaxation time and branch and bound search time till either optimal solution or the time limit of four hours is

reached. So, in some instances the total reported time exceeds four hours, although the branch and bound search time

was always lesser then the specified number. The best objective value obtained from the branch and cut approach is

reported in the column-4. For two of the instances, 23rd and 28th, we could not get any solution. The best LP lower

bound obtained from the MILP branch and bound solution is reported next with the optimality gap reported in column-

5. Finally, we report the solution obtained from the proposed heuristic approach. The best objective value obtained,

running time till completion and optimality gap from the LP lower bound in column-4 are presented consecutively.
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Table 5: Computational results

Instances OA-based branch and cut MILP based neighborhood search heuristic
#lazycuts Run.time (sec) Obj.best (mil. INR) LP.lb Opt.gap (%) Obj.Best (mil. INR) Run.time (sec) Opt.gap (%)

1 1 3.40 47.64 47.64 0.00 47.64 4.27 0.0
2 1 5.55 47.63 47.63 0.00 47.63 3.56 0.0
3 1 1.26 47.52 47.52 0.00 47.52 3.73 0.0
4 2 11.90 68.39 68.39 0.00 68.39 5.92 0.0
5 2 15.23 67.34 67.34 0.00 67.34 6.29 0.0
6 1 9.20 67.32 67.32 0.00 69.66 6.66 3.4
7 3 25.41 90.73 90.73 0.00 90.79 7.98 0.1
8 3 31.56 89.05 89.05 0.00 89.05 8.89 0.0
9 0 19.19 88.89 88.89 0.00 88.89 10.00 0.0

10 6 73.66 109.03 109.03 0.00 111.23 14.26 2.0
11 12 110.71 108.68 108.68 0.00 108.68 15.03 0.0
12 4 58.80 108.35 108.35 0.00 109.32 14.16 0.9
13 13 246.04 130.28 130.28 0.00 130.57 23.24 0.2
14 7 348.63 129.34 129.34 0.00 129.35 19.93 0.0
15 7 185.64 129.21 129.21 0.00 129.51 23.02 0.2
16 9 354.98 169.79 169.79 0.00 169.90 36.68 0.1
17 24 500.09 169.22 169.22 0.00 169.23 55.17 0.0
18 15 271.57 169.17 169.17 0.00 170.41 46.51 0.7
19 18 2,875.11 196.70 196.70 0.00 197.40 56.68 0.4
20 1 3,234.91 190.81 190.81 0.00 195.43 80.94 2.4
21 12 2,594.23 190.93 190.93 0.00 198.42 81.48 3.8
22 36 32,073.11 277.00 276.93 0.02 289.61 209.44 4.4
23 - 28,589.15 - - - 278.73 269.15 -
24 8 17,659.12 279.14 257.61 7.71 280.24 387.84 8.1
25 20 28,869.61 374.97 339.44 9.48 358.44 1,432.53 5.3
26 8 43,310.90 377.54 318.48 15.64 352.10 1,319.95 9.5
27 13 46,433.96 401.28 320.05 20.24 357.01 1,183.47 10.4
28 2 36,960.00 - - - 654.92 13,451.97 -
29 3 45,965.00 688.81 510.73 25.85 615.85 9,552.97 17.1
30 2 57,866.29 645.08 464.16 28.05 584.54 18,854.18 20.6

Computational analysis reveals that the OA-based branch and cut algorithm presents itself as a reliable solution ap-

proach for the proposed MINLP problem. For instances with less than 150 processing units, the solution method

reported optimal or near-optimal results, although the solution time increases rapidly from a few seconds for the

smaller instances to almost an hour. For instances with more than or equal to 150 processing units, the running time

exceeded the specified time limit, and the achieved optimality gap widened with problem size. The heuristic approach

yields quick solutions to smaller instances 1 - 22, with an average optimality gap of 0.8% ranging from 0 to 4.4%.

Even for the larger instances it reports, on an average, 7% lower than the best-found integer solution from the exact

method in substantially lesser solution times in comparison to the exact OA-based method.

6. Trade-offs between financial and social costs of a CETP system

The problem consists of multiple objectives that may conflict with each other and are expected to vary widely with

changes in parameters. We would like to understand the dynamics of trade-offs among various financial costs inherent

in the CETP system. The processing units collaborating to install a group of CETPs would mainly focus on financial

costs. Although the purpose of the CETP system is to minimize environmental damage, large-scale operations have
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some negative consequences on the local environment and society. One such cost associated with a CETP system is

the land area usage for CETP installation. Firms do bear the actual monetary cost of this resource when installing

and using a CETP system, but the societal costs of land area usage have a larger negative impact on the region. So,

we analyze the social cost of land area usage along with the installation, transportation, and treatment costs of the

CETP system as a multi-objective nonlinear integer programming problem. It consists of four different objectives-

CETP installation cost (Ob jI), CETP treatment cost (Ob jT ), CETP transportation cost (Ob jA), and the total area used

in CETP installation (Ob jAr). The four objectives can be expressed as shown in equations 25 - 28. Here At refers to

the area usage in square meter (sq.m) in installing and operating a CETP of type t. We are not attaching any additional

per-unit cost parameter to the social cost, as subjective estimations are varying widely in terms of estimated impact on

the local environment and society in the long term. The social costs are estimated in its original unit of square meter

(sq.m) for the total area used. We use the smallest data instance 3 (refer to table 1) with 20 processing units, 2 CETP

potential locations, and 9 CETP types for our multi-objective analysis.

Ob jI =
∑
i∈I

∑
t∈T

CF
ti yti (25)

Ob jT =
∑
i∈I

Kxq
i pr

i (26)

Ob jA =
∑
i∈I

∑
j∈F

CA
jiz ji (27)

Ob jAr =
∑
i∈I

∑
t∈T

Atyti (28)

We present the trade-offs between the four objectives. We do a pairwise comparison of each pair of objectives men-

tioned above using the ξ-constraint method. In this, we first find the minimum and maximum feasible values of all

objectives by running the whole model independently w.r.t. each objective at a time. Table 6 lists the maximum and

minimum feasible values of each objective.

Table 6: Maximum and minimum feasible values of different objectives

Minimum Maximum
Ob jI 7,635,924 15,271,848
Ob jC 33,681,941 46,381,944
Ob jT 5,149,277 5,426,897
Ob jA 13,820 27,641

Installation cost and transportation cost are inversely related to each other. For the given parameters, we get a Pareto

frontier with three Pareto optimal points, as shown in figure 3. There is a sudden increase in transportation cost, below

a threshold reduction in installation cost, as fewer CETPs are needed for a lesser installation cost.
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Figure 3: Installation cost vs transportation cost

We can see an inverse relationship between treatment cost and transportation costs. A total of 10 Pareto points can

be derived. Small changes in transportation cost leads to corresponding small changes in the treatment cost. Lower

transportation cost implies more number of CETPs, which leads to higher treatment costs, as we are unable to take

advantage of the economy of scale in treatment. Figure 4 shows the interrelationship between the two objectives.

Figure 4: transportation cost vs treatment cost
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There exists an inverse relationship between transportation cost and area used. Three Pareto optimal points are iden-

tified for the data. One can see a sudden jump in the area used on reducing transportation costs, as more CETPs are

required. Figure 5 presents the trade-off between the two objectives.

Figure 5: transportation cost vs Area

The three objectives of installation cost, treatment cost, and the area used are directly related to each other, and we get

a single Pareto optimal point for all three objectives together, as given in table 7.

Table 7: Pareto optimal point for installation cost, treatment cost and area used

Ob jT Ob jI Ob jAr

5,149,272 7,635,924 13,820

7. Conclusions and future work

The implementation of a shared ecosystem of effluent treatment facilities serving a cluster of processing units of sim-

ilar industries is a positive trend for small and medium enterprises. A strategic problem in this scenario is designing

an efficient and effective CETP system, which includes selecting appropriate types of CETPs in terms of treatment ca-

pacity, deciding locations for CETP installations, and allocating processing units to each installed CETP. The problem

is modeled as a capacitated facility location-allocation problem with nonconvex treatment costs. An MINLP mathe-

matical formulation is presented for the problem. Thus, the model extends the capacitated facility location model in

two ways- by considering multiple discrete options of facilities, in terms of capacity, cost, and other physical char-

acteristics, to be installed at a location and nonconvex treatment costs. As capacitated facility location problems are

NP-hard, finding optimal solutions to this important strategic problem can be computationally challenging.
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A case study from an industrial cluster is presented, and data is estimated from a real planning scenario. Further,

an exact convexification strategy is proposed for the nonconvex treatment costs. We present two solution approaches

for the MINLP model. First, an outer approximation cutting plane algorithm is implemented in a branch and cut

framework. To solve large instances, we incorporate the the branch and cut method into a MILP based neighborhood

search heuristic. The computational results with the two approaches suggest that branch and cut method can solve

medium sized instances to optimality in a reasonable time. The heuristic approach yields good quality solutions

in comparatively smaller computational time for larger instances. We analyze the trade-offs between various cost

components and the social cost of area usage through multi-objective analysis.

Future research can explore interconnected CETPs and incorporate uncertainties in effluent discharge from processing

units. Further, seasonality in effluent from processing units can be considered to develop a multi-period decision

making model.
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