
 

 

 

 

 

 

 

 
 
 

 

Vendors' View of Demand: A Platykurtic Class of Distributions 

 

 

Sujay Mukhoti 

sujaym@iimidr.ac.in 

Abhirup Banerjee 

abhirup.banerjee@cardiov.ox.ac.uk 

 

 

WP/02/2020-21/OM&QT 

March 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer  

The purpose of Working Paper (WP) is to help academic community to share their research findings with professional 

colleagues at pre-publication stage. WPs are offered on this site by the author, in the interests of scholarship. The format 

(other than the cover sheet) is not standardized. Comments/questions on papers should be sent directly to the author(s). The 

copyright of this WP is held by the author(s) and, views/opinions/findings etc. expressed in this working paper are those of 

the authors and not that of IIM Indore. 

mailto:abhirup.banerjee@cardiov.ox.ac.uk


Vendors’ view of demand: a platykurtic class of distributions

ABHIRUP BANERJEE ∗

Radcliffe Department of Medicine, Division of Cardiovascular Medicine

University of Oxford, Oxford OX3 9DU, U.K.; and

Department of Engineering Science, Institute of Biomedical Engineering

University of Oxford, Oxford OX3 7DQ, U.K.

SUJAY K. MUKHOTI†

Operations Management and Quantitative Techniques Area

Indian Institute of Management Indore, Indore 453 556, India

Abstract

A longstanding problem in demand analysis is to identify an appropriate demand distribution

from qualitative feed-backs obtained from field survey. A typical survey from vendors would

indicate towards a flat-top density curve tri-partitioned into positive region consisting of the

most-likely set, boundary set that has possibility of belonging to the class, and negative region

having least likelihood of occurrence. Such flat-top density curves, imply that multiple values

are equally most likely to occur and hence all are modes. However, most popular probability

models used in demand analysis are all uni-modal, leaving a single point in the positive region

with maximum likelihood. In this paper, we propose a new class of probability distributions,

called the stomped class of distributions, that provides better model fitting for the flat-top

demand densities. We discuss the statistical properties of a special stomped distribution, called

the stomped normal distribution. We have investigated the parameter estimation.

Keywords: Stomped normal distribution; Stochastic Demand; Demand distribution.

1. INTRODUCTION

One of the fundamental problems in demand survey from small vendors, like the green-grocers,

is that the data comes in a qualitative format. Most common answer about future demand is an

∗email: abhirup.banerjee@cardiov.ox.ac.uk
†email:sujaym@iimidr.ac.in
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interval with a strong favor of the vendor. Further queries would reveal increasing dis-likelihood

of the vendor as the possible demand moves away from the central interval of strongest likelihood.

However, pin-pointing further within the central interval becomes very difficult. Since quantification

of such a qualitative feedback on demand is difficult, the demand distribution is always assumed to

be unimodal, though the qualitative feedback is hard to match with such assumptions. In this paper,

we discuss a novel yet simple probability model that characterizes the type of qualitative feedback

described above, using a modal set as opposed to the existing uni-modal demand distributions.

A careful study of typical qualitative responses on demand would reveal that the basis of

such decision making pattern is a braod tri-partition of the randomness inherent to the unknown

demand. In order to provide a structure to the unknown and stochastic demand, the range of

possible demand is split into a positive region describing demand data-points that are most likely,

a boundary region consisting of demand data-points that possibly can occur or somewhat likely,

and a negative region consisting of the demand data-points that are lest likely to occur. However,

the existing uni-modal probability models fail to incorporate this three-way decision structure for

interpreting the demand distribution.

A resemblance with this three-way structure could be found in histograms with flat-top and high

order contact. Such histograms are often encountered in probabilistic clustering of objects in image

data analysis (Banerjee & Maji 2020; Banerjee & Maji 2019). Many other fields of studies also

require probability models for explaining histograms depicting the tri-partition of data, including

machine learning (Ghahramani 2015), computer vision (Marroquin, Mitter & Poggio 1987), data

mining (Fang, Li, Jordan & Liu 2017), pattern recognition (Little 1993), web intelligence (Baldi,

Frasconi & Smyth 2003), and so on. Even then, research on a suitable probability model in such

cases has been limited to different mixtures of uni-modal distribution or their variations.

In this paper, we describe a novel class of distributions with a modal set in order to incorporate

this specific three-way decision structure of the vendors, which gets disclosed during demand-

surveys. Intuitively, a distribution with a modal set can be constructed from a uni-modal distri-

bution by replacing the density of an interval containing the mode with that of a suitable uniform

distribution, so that continuity of the probability density function (pdf ) is maintained. Since the

central region does not have a peak, and rather is flat, the new distribution could be thought of

as a headless or stomped family of distributions. Clearly, stomped distributions with a modal set,

provide robust alternatives for data distributions ranging from platykurtic to mesokurtic shapes.
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Banerjee & Maji (2015) first introduced the idea of the stomped normal distribution and explained

the effectiveness of such headless distributions for segmenting medical or brain MR images.

In particular, we present the theoretical results required to simulate from stomped normal

distribution and moment computation. Due to lack of uni-modality, maximum likelihood (ML)

estimation becomes infeasible. Hence, in this paper we use the method of moments estimation and

show its effectiveness using simulation. The paper concludes with a discussion on the current work

and its possible future direction.

2. STOMPED NORMAL DISTRIBUTION AND ITS PROPERTIES

In this section, we define stomped normal family and discuss its important statistical properties.

We begin with the definition of the stomped normal distribution as follows:

Definition 2.1. Let X be a random variable over R. X is said to follow one parameter stomped

normal distribution (StN) iff its pdf is given as

f(x) =
1

D
φ(z), x ∈ R;

where φ(·) and Φ(·) are pdf and CDF of standard normal distribution; D = 2(Φ̄(k)+kφ(k)), where

Φ̄(·) denotes the reliability or survival function of standard normal distribution, and

z =


k, if |x| < k

x, otherwise.

We would use StN(k) as a notation for one parameter stomped normal distribution. The pdf

plot of one parameter StN random variable is given below.

From the plot, it can be observed that the distribution has a modal set (−0.5, 0.5), in which

the density is maximum. If the underlying probability distribution of a feature in a cluster is StN,

then the observed data could be assigned to the cluster if it belongs to the modal set. In addition,

all these data points would have the same degree of belongingness, measured proportional to their

densities, to the cluster. On the other hand, with a unimodal feature distribution, maximizing

the data likelihood would point to a single value as a member to the cluster and all other nearby

points will have decreased degree of belongingness to the cluster. The class of stomped normal

distribution strictly includes the standard normal distribution at k = 0 (Azzalini 1985, see).
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Figure 1: Probability density curve for StN distribution with k = 0.5

One parameter stomped normal distribution can be easily generalized to a class of three pa-

rameter probability distribution, which strictly includes normal distribution at a specific parameter

setting. The general stomped normal distribution with three parameters is defined as follows.

Definition 2.2. Let X be a random variable over R. X is said to follow three parameter stomped

normal distribution (StN) iff its pdf is given as

f(x) =
1

Dσ
φ(z), x ∈ R; where D = 2(Φ̄(k) + kφ(k)) and z =


k, if

∣∣x−µ
σ

∣∣ < k

x−µ
σ , otherwise.

As in the case of single parameter stomped normal family, the three parameter distribution is

also strictly inclusive of N(µ, σ2) at k = 0. The following theorem provides the expression for the

cumulative distribution function (CDF) of StN(µ, σ, k).

Theorem 2.1. Let X be a real valued random variable following StN(µ, σ, k), µ ∈ R, σ ∈ R+, k >

0. The CDF of X is given by

F (x) =



1

D
Φ

(
x− µ
σ

)
if x ≤ µ− kσ

1

2
+
φ(k)

D

(
x− µ
σ

)
if µ− kσ < x < µ+ kσ

1− 1

D
Φ

(
µ− x
σ

)
if x ≥ µ+ kσ

(1)

Proof of the above theorem is available in Appendix A in the supplementary material. In case
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of single parameter stomped normal distribution, StN(k), the CDF expression reduces to

F (x) =



1

D
Φ(x), if x ≤ −k

1

2
+
φ(k)

D
x, if − k < x < k

1− 1

D
Φ(−x), if x ≥ k

(2)

Also, from the above result, it can be observed that at k = 0, the CDF of three parameter stomped

normal distribution reduces to a Gaussian one with mean µ and variance σ2.

In what follows, we prove an important result for the stomped normal family. We show that this

family has class preservation property with respect to linear transform, i.e. the linear transform of

an StN random variable yields an StN random variable only.

Theorem 2.2. If X ∼ StN(µ, σ, k), then a+ bX ∼ StN(a+ bµ, |b|σ, k), where b 6= 0.

For the proof of the above theorem, see Appendix A in the supplementary material.

2.1 Simulating from stomped normal distribution

Using the result in Theorem 2.2, we can simulate from stomped normal distribution using the

following inverse transformation. Let u be a random number drawn from Unif(0, 1). Then, a

single parameter stomped normal variate x is generated by the inverse of F on u as below:

x = F−1(u) =



Φ−1(Du) if u ≤ 1
DΦ(−k)

D

φ(k)

(
u− 1

2

)
if 1

DΦ(−k) < u < 1− 1
DΦ(−k)

Φ−1 (D(1− u)) if u ≥ 1− 1
DΦ(−k)

(3)

To draw from StN(µ, σ, k), we note from Theorem 2.2 that Y = µ + σX ∼ StN(µ, σ, k).

Therefore, by linear transformation of X, a random sample from the three parameter stomped

normal distribution can be obtained.

2.2 Moment generating function and moments

Existence of the moment generating function (MGF) of stomped normal distribution follows from

the fact that it is dominated by a normal distribution. Thus all moments of stomped normal

distribution would exist. In the following theorem we provide the expression of its MGF.
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Theorem 2.3. Let X be a real valued random variable following stomped normal distribution

StN(µ, σ, k). Then the moment generating function of X is given by:

MX(t) =
etµ

D

[
e
t2σ2

2

(
Φ(−k − tσ) + Φ(−k + tσ)

)
+ 2φ(k)

∞∑
i=0

(tσ)2ik2i+1

(2i+ 1)!

]
. (4)

For proof of the above theorem, see Appendix A in the supplementary material. Differentiating

the MGF, we can obtain different raw moments of the stomped normal distribution. Thus,

E[X] =
∂

∂t
MX(t)

∣∣∣∣
t=0

= µ+
1√

2πD
etµ
[
e
t2σ2

2 tσ2
√

2π (Φ(−k − tσ) + Φ(−k + tσ))

+e
t2σ2

2

√
2π (−σφ(−k − tσ) + σφ(−k + tσ)) + 2e−

k2

2

∞∑
i=1

(tσ)2i−1k2i+12iσ

(2i+ 1)!

]∣∣∣∣∣
t=0

= µ (5)

However, it seems difficult to get higher order moments, specially the central ones, by differen-

tiating the MGF. In what follows, we provide a recursion relation for the central moments of the

StN distribution. We begin with the following two important lemmas in this context.

Lemma 2.4. Consider a real valued random variable X ∼ StN(µ, σ, k) with MGF MX(t). Denote

the partial derivative with respect to t by the operator 5 and the identity operator by Ĩ. Then,

(5− µĨ)p (tMX(t)) = t(5− µĨ)p MX(t) + p(5− µĨ)p−1 MX(t). (6)

Proof. Let us first consider the result for p = 1.

(
5− µĨ

) (
tMX(t)

)
= t

∂

∂t
MX(t) +MX(t)− µtMX(t) = t

(
5− µĨ

)
MX(t) +MX(t).

Next, for p = 2,

(
5− µĨ

)2 (
tMX(t)

)
=
(
5− µĨ

)(
t
(
5− µĨ

)
MX(t) +MX(t)

)
, [using above result for p = 1]

= t
(
5− µĨ

)2
MX(t) +

(
5− µĨ

)
MX(t) +

(
5− µĨ

)
MX(t)

= t
(
5− µĨ

)2
MX(t) + 2

(
5− µĨ

)
MX(t).

Hence, the proof follows from induction.

It can be noted here that
(
5− µĨ

)p
MX(t) |t=0= µp, where µp is the pth order central moment

of X ∼ StN(µ, σ, k). Thus, from the above lemma we get, (5− µĨ )p (tMX(t)) |t=0= pµp−1.
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Next, we define, F0(t) = 2σ
D φ(k)

∑∞
i=1

2i(tσ)2i−1k2i+1

(2i+1)! , F1(t) = etµF0(t), and Fp(t) = (5 −

µĨ)Fp−1(t), ∀p ≥ 2, and t ∈ R. Differentiating the MGF in Theorem 2.3, it can be easily shown

that

M ′X(t) = (µ+ tσ2)MX(t) +
2σ

D
etµφ(k)

∞∑
i=1

2i(tσ)2i−1k2i+1

(2i+ 1)!
= (µ+ tσ2)MX(t) + F1(t). (7)

In the following lemma, we establish the relation between the MGF of StN(µ, σ, k) and Fp(t).

Lemma 2.5. Consider a random variable X ∼ StN(µ, σ, k). Then, for any t ∈ R

Fp+1(t) = 2etµ
σ

D
φ(k)Jp(t)

=
(
5− µĨ

)p+1
MX(t)− σ2

(
t
(
5− µĨ

)p
MX(t) + p

(
5− µĨ

)p−1
MX(t)

)
(8)

where Jp(t) =
∂p

∂tp

( ∞∑
i=1

2i(tσ)2i−1k2i+1

(2i+ 1)!

)
.

For the proof of this lemma, see Appendix A in the supplementary material. In the light of the

above two lemmas, we now provide a recursion relation of the central moments of StN(µ, σ, k) in

the following theorem.

Theorem 2.6. The central moments of an StN(µ, σ, k) random variable follows the recursion

relation:

µp+1 =


pσ2µp−1 + 2φ(k)D

σp+1kp+2

(p+2) , if p = 2d− 1

0, if p = 2d

(9)

where d is any positive integer.

Detailed proof of the above theorem is provided in Appendix A in the supplementary material.

It follows from the above theorem that the variance of StN(µ, σ, k) is

µ2 = σ2 +
2φ(k)

D
σ2
k3

3
= σ2

(
1 +

2φ(k)

D

k3

3

)
[assuming d = 1]. (10)

Further, the fourth central moment is given by

µ4 = 3σ4 +
2φ(k)

D
σ4
(
k3 +

k5

5

)
= σ4

(
3 +

2φ(k)

D

(
k3 +

k5

5

))
. (11)

As k → 0, µ4 → 3σ4, indicating StN(µ, σ, k) resembles N(µ, σ2) more and more closely as the

truncation parameter approaches zero. In general, solving the recursion in (9), the even order
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moment can be expressed as

µ2d = (2d− 1)σ2µ2d−2 + 2
φ(k)

D
σ2d

k2d+1

2d+ 1

= (2d− 1)(2d− 3)σ4µ2d−4 + 2
φ(k)

D
σ2d

(
k2d−1 +

k2d+1

2d+ 1

)
= (2d− 1)(2d− 3)(2d− 5)σ6µ2d−6 + 2

φ(k)

D
σ2d

(
(2d− 1)k2d−3 + k2d−1 +

k2d+1

2d+ 1

)
· · · · · · · · · · · · · · · · · · · · · · · ·

=
(2d− 1)!

2d−1(d− 1)!
σ2d +

2φ(k)

D
σ2d
(

(2d− 1)!

2d−1(d− 1)!3
k3 +

2 (2d− 1)! 2!

2d−1(d− 1)!5!
k5 + (2d− 1)k2d−3

+ k2d−1 +
k2d+1

2d+ 1

)
. (12)

3. PARAMETER ESTIMATION FOR STOMPED NORMAL DISTRIBUTION

In this section we discuss the parameter estimation method of stomped normal distribution. The

stomped normal density is uniform over the range (µ − kσ, µ + kσ) and hence, there is no unique

maxima in that interval, which in turn indicates maximum likelihood estimation of µ is not possible.

We rather consider two other methods of estimation. First, we use the method of moments to

estimate the parameters µ, σ, and k. The second approach exploits the symmetry to estimate µ

iteratively, and the remaining parameters are estimated using an iterative optimization scheme. In

both cases, we use simulation to show the accuracy of the estimators.

3.1 Method of moment estimation

In the method of moment (MoM) estimation, the estimating equations are formed by equating the

sample and population moments. Equating the first three non-zero moments, viz. 1st, 2nd and 4th,

to their sample counter parts, we obtain the following three equations:

x̄ = µ, (13)

s2 = σ2
(

1 +
2φ(k)

D

k3

3

)
, (14)

and m4 = σ4
(

3 +
2φ(k)

D

(
k3 +

k5

5

))
, (15)

where, x̄, s2, and m4 are the sample mean, variance, and 4th central moment, respectively. The

parameter µ is estimated from (13), while k and σ are estimated from (14) and (15). After

substituting σ2 from (14) into (15), k is estimated numerically from the implicit equation. Using

the estimated value of k in (14), we find the MoM estimator of σ.
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Figure 2: Estimation bias and mean-square error (MSE) plots of the method of moment estimators

of the parameters µ, σ, and k.

The asymptotic unbiasedness of the estimators could be intuitively argued, noting that sample

moments converge in L2 to the population moments. Here, we inspect the bias and mean square

errors (MSE) of the parameter estimates for increasing sample sizes to gauge the performance of

the MoM estimators. A random sample of size n is simulated from an StN distribution with known

µ, σ, and k, where n ∈ {20, 50, 100, 1000, 5000, 10000}. The MoM parameter estimates are obtained

by solving (13)-(15). For each sample size, this process is repeated M = 5000 times to compute

bias and MSE of the estimates. In this work, we have considered a fixed location parameter µ = 1

and σ ∈ {0.1, 1, 5}, k ∈ {0.5, 1, 3} for illustration purpose. Bias and MSE of the MoM estimators

of µ, σ, and k are reported in Fig. 2 corresponding to different sets of values.

It can be observed from the graphs that the MoM estimators are asymptotically unbiased. But

the convergence happens at different rates for different parameters. For example, µ̂ is asymptotically

unbiased for almost all combinations with the most poor convergence occurring for (µ, σ, k) =

(1, 5, 3) for both bias and MSE plots, i.e. when σ and k are both high in this set up. In a similar

manner, the MoM estimators of σ and k converge fast except when the corresponding true values

are high, i.e. σ = 5 and k = 3.
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4. DISCUSSION

In this paper, we have provided an elicitation of probability model from typical qualitative feedback

from demand survey. In particular we have motivated the problem of finding a suitable demand

distribution for responses indicating flat-top histograms using stomped family of distributions with

special reference to stomped normal distribution. Such stomped distributions facilitate charac-

terization of the tri-partition of data into three classes, viz. the positive region consisting of the

data-points that equally most-likely, boundary region with fast decreasing likelihood of demand,

and negative region consisting of the demand-set that is not likely to occur. Our main contribution

in this paper is to provide a class of platykurtic distributions containing normal, which characterizes

the tri-partitioned decision structure derived from qualitative demand survey feedback. Here, we

have provided major statistical properties of this novel distribution with varying peakedness, rang-

ing from platykurtic to mesokurtic distributions, with a focus on stomped normal distribution. We

have also investigated the parameter estimation method for stomped normal family, which lacks the

advantage of ML estimation. For this purpose, we have performed an extensive simulation study

over 9 different parameter combinations and 6 different sample sizes.
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Appendix A PROOFS OF THEOREMS

A.1 Proof of Theorem 2.1

Proof. We first consider the case x ≤ µ− kσ. The CDF in this region is

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du =

∫ x

−∞

1

D

1

σ
φ

(
u− µ
σ

)
du =

1

D
Φ

(
x− µ
σ

)
. (16)

Next consider µ− kσ < x < µ+ kσ. In this case the CDF is given by

F (x) = P (X ≤ x) = P (X ≤ µ− kσ) + P (µ− kσ < X ≤ x)

=
1

D
(1− Φ(k)) +

1

D

1

σ
φ(k)(x− (µ− kσ))

=
1

D

(
1− Φ(k) +

(
x− µ
σ

)
φ(k) + kφ(k)

)
=

1

D

(
D

2
+

(
x− µ
σ

)
φ(k)

)
=

1

2
+
φ(k)

D

(
x− µ
σ

)
. (17)

For x ≥ µ+ kσ, the CDF is given by

F (x) = P (X ≤ x) = P (X ≤ µ− kσ) + P (µ− kσ < X < µ+ kσ) + P (µ+ kσ ≤ X ≤ x)

=
1

D
(1− Φ(k)) +

1

D
2kφ(k) +

∫ x

µ+kσ
f(u)du

=
1

D
(1− Φ(k)) +

1

D
2kφ(k) +

∫ x

µ+kσ

1

Dσ
φ

(
u− µ
σ

)
du

=
1

D

[
1− Φ(k) + 2kφ(k) + Φ

(
x− µ
σ

)
− Φ(k)

]
=

1

D

[
1− 2Φ(k) + 2kφ(k) + Φ

(
x− µ
σ

)]
=

1

D

[
D − Φ

(
−x− µ

σ

)]
= 1− 1

D
Φ

(
µ− x
σ

)
. (18)

Hence, CDF : F (x) =



1

D
Φ

(
x− µ
σ

)
if x ≤ µ− kσ

1

2
+
φ(k)

D

(
x− µ
σ

)
if µ− kσ < x < µ+ kσ

1− 1

D
Φ

(
µ− x
σ

)
if x ≥ µ+ kσ

(19)
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A.2 Proof of Theorem 2.2

Proof. Let us consider a linear transformation of X ∼ StN(µ, σ, k) as Y = a + bX. To derive the

probability distribution of Y , we consider two cases, viz. b > 0 and b < 0, separately.

Case 1: b > 0

FY (y) = P (a+ bX ≤ y) = FX

(
y − a
b

)

=



1

D
Φ

(
y−a
b − µ
σ

)
if y−a

b ≤ µ− kσ

1

2
+
φ(k)

D

(
y−a
b − µ
σ

)
if µ− kσ < y−a

b < µ+ kσ

1− 1

D
Φ

(
−
y−a
b − µ
σ

)
if y−a

b ≥ µ+ kσ

(20)

⇒ FY (y) =



1

D
Φ

(
y − (a+ bµ)

bσ

)
if y ≤ a+ bµ− kbσ

1

2
+
φ(k)

D

(
y − (a+ bµ)

bσ

)
if a+ bµ− kbσ < y < a+ bµ+ kbσ

1− 1

D
Φ

(
−y − (a+ bµ)

bσ

)
if y ≥ a+ bµ+ kbσ

(21)

Hence, Y = a+ bX ∼ StN(a+ bµ, bσ, k), for b > 0.

Case 2: b < 0

FY (y) = P (a+ bX ≤ y) = 1− FX
(
y − a
b

)
= 1− FX

(
a− y
| b |

)

=



1− 1

D
Φ

(
a−y
b − µ
σ

)
if a−y

b ≤ µ− kσ

1

2
− φ(k)

D

(
a−y
b − µ
σ

)
if µ− kσ < a−y

b < µ+ kσ

1

D
Φ

(
a−y
b − µ
σ

)
if a−y

b ≥ µ+ kσ

(22)

⇒ FY (y) =



1

D
Φ

(
y − (a+ bµ)

|b|σ

)
, if y ≤ (a+ bµ)− k|b|σ

1

2
+
φ(k)

D

(
y − (a+ bµ)

|b|σ

)
if (a+ bµ)− k|b|σ < y < (a+ bµ) + k|b|σ

1− 1

D
Φ

(
−y − (a+ bµ)

|b|σ

)
if y ≥ (a+ bµ) + k|b|σ

(23)
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Hence, Y = a+ bX ∼ StN(a+ bµ, |b|σ, k), where b < 0. Combining the results from Case 1 and 2

we get, Y = a+ bX ∼ StN(a+ bµ, |b|σ, k), where b 6= 0.

A.3 Proof of Theorem 2.3

Proof.

MX(t) = E
[
etX
]

=

∫ −k
−∞

etxf(x)dx+

∫ k

−k
etxf(x)dx+

∫ ∞
k

etxf(x)dx

=
1

D

[∫ −k
−∞

etxφ

(
x− µ
σ

)
dx+

∫ k

−k
etxφ(k)dx+

∫ ∞
k

etxφ(x)dx

]
=

etµ

D
√

2π

[∫ −k
−∞

etσz−
z2

2 dz +

∫ k

−k
etσz−

k2

2 dz +

∫ ∞
k

etσz−
z2

2 dz

]
=

1

D
etµ+

t2σ2

2

[
Φ(−k + tσ) + Φ(−k − tσ) +

1

tσ
(φ(k − tσ)− φ(k + tσ))

]
. (24)

Now,
1

tσ
(etkσ − e−tkσ) =

1

p
(epk − e−pk) =

1

p
2

(
pk +

(pk)3

3!
+

(pk)5

5!
+ · · ·

)
= 2

(
k +

p2k3

3!
+
p4k5

5!
+ · · ·

)
= 2

∞∑
i=0

(tσ)2ik2i+1

(2i+ 1)!
. (25)

Applying (25) into (24), we get

MX(t) =
etµ

D

[
e
t2σ2

2

(
Φ(−k − tσ) + Φ(−k + tσ)

)
+

√
2

π
e−

k2

2

∞∑
i=0

(tσ)2ik2i+1

(2i+ 1)!

]
.
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A.4 Proof of Lemma 2.5

Proof. For X ∼ StN(µ, σ, k),

F1(t) = 2etµ
1

D
φ(k)

∞∑
i=1

2iσ(tσ)2i−1k2i+1

(2i+ 1)!
, [from Eq. (10) in main paper]

⇒ ∂

∂t
F1(t) = 2etµµ

1

D
φ(k)

∞∑
i=1

2iσ(tσ)2i−1k2i+1

(2i+ 1)!
+ 2etµ

1

D
φ(k)

∂

∂t

( ∞∑
i=1

2iσ(tσ)2i−1k2i+1

(2i+ 1)!

)

⇒ ∂

∂t
F1(t)− µF1(t) = F2(t) = 2etµ

1

D
φ(k)

∂

∂t

( ∞∑
i=1

2iσ(tσ)2i−1k2i+1

(2i+ 1)!

)
.

Repeating the same steps, we get

Fp+1(t) = CσJp(t), where Jp(t) =
∂p

∂tp

( ∞∑
i=1

2i(tσ)2i−1k2i+1

(2i+ 1)!

)
and C = 2etµ

φ(k)

D
. (26)

Also,

Fp+1(t) =
(
5− µĨ

)
Fp(t) =

(
5− µĨ

)2
Fp−1(t) = · · · =

(
5− µĨ

)p
F1(t)

=
(
5− µĨ

)p (
5− (µ+ tσ2)Ĩ

)
MX(t) [from Eq. (10) in main paper]

=
(
5− µĨ

)p+1
MX(t)− σ2

(
5− µĨ

)p (
tMX(t)

)
. (27)

Finally, from Lemma 2.4 and Eqns. (26) and (27), we get

Fp+1(t) = 2etµ
φ(k)

D
σJp(t)

=
(
5− µĨ

)p+1
MX(t)− σ2

(
t
(
5− µĨ

)p
MX(t) + p

(
5− µĨ

)p−1
MX(t)

)
.
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A.5 Proof of Theorem 2.6

Proof. From Lemma 2.5, it follows that

Fp+1(0) = 2
φ(k)

D
σJp(0) = µp+1 − pσ2µp−1. (28)

Further, from Eq. (10) in main paper, it can be noticed that

M ′X(t) = F1(t) + (µ+ tσ2)MX(t)

∴
∂

∂t
F1(t) = M ′′X(t)− σ2MX(t)− (µ+ tσ2)M ′X(t)

= M ′′X(t)− σ2
[
F1(t) + (µ+ tσ2)MX(t)

]
⇒M ′′X(t) =

∂

∂t
F1(t) + σ2M ′X(t). (29)

Differentiating the above equation (p− 2) times we get,

M
(p)
X (t) =

∂p−1

∂tp−1
F1(t) + σ2M

(p−1)
X (t) (30)

where, f (p)(x) = ∂p

∂xp f(x).

Further notice,

Jp(t) =
∂p

∂tp

( ∞∑
i=1

2i(tσ)2i−1k2i+1

(2i+ 1)!

)
=

∂p−1

∂tp−1
∂

∂t

( ∞∑
i=1

2i(tσ)2i−1k2i+1

(2i+ 1)!

)

=
∂p−1

∂tp−1

( ∞∑
i=1

2i(2i− 1)σ(tσ)2i−2k2i+1

(2i+ 1)!

)

=
∂p−1

∂tp−1

( ∞∑
i=0

1

(2i+ 3)(2i)!
σ(tσ)2ik2i+3

)

=
∂p−2

∂tp−2

( ∞∑
i=1

1

(2i+ 3)(2i− 1)!
σ2(tσ)2i−1k2i+3

)

=
∂p−3

∂tp−3

( ∞∑
i=1

1

(2i+ 3)(2i− 2)!
σ3(tσ)2i−2k2i+3

)

=
∂p−3

∂tp−3

( ∞∑
i=0

1

(2i+ 5)(2i)!
σ3(tσ)2ik2i+5

)
.

Proceeding this way, it can be shown that,

Jp(t) =


∞∑
i=0

1

(2i+ 2d+ 1)(2i)!
σ2d−1(tσ)2ik2i+2d+1, if p = 2d− 1

∞∑
i=1

1

(2i+ 2d+ 1)(2i− 1)!
σ2d(tσ)2i−1k2i+2d+1, if p = 2d
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Thus, from Eq. (26) we obtain,

Fp+1(t) =


C

∞∑
i=1

1

(2i+ p)(2i− 2)!
σp+1(tσ)2i−2k2i+p, if p = 2d− 1

C

∞∑
i=1

1

(2i+ p+ 1)(2i− 1)!
σp+1(tσ)2i−1k2i+p+1, if p = 2d

At t = 0,

Fp+1(0) =


2
φ(k)

D

σp+1kp+2

(p+ 2)
, if p = 2d− 1

0, if p = 2d

(31)

Combining (31) and Lemma 2.5 with t = 0, we get:

µp+1 =


pσ2µp−1 + 2φ(k)D

σp+1kp+2

(p+2) , if p = 2d− 1

0, if p = 2d
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Appendix B TABLES

Sample µ σ k

size MoM MoM MoM

20 0.9996 ± 0.0229 0.0774 ± 0.0210 1.7312 ± 1.1972

50 0.9998 ± 0.0144 0.0867 ± 0.0139 1.2220 ± 0.5945

100 1.0001 ± 0.0101 0.0922 ± 0.0092 0.9623 ± 0.3432

1000 1.0000 ± 0.0032 0.0984 ± 0.0029 0.6142 ± 0.1783

5000 1.0001 ± 0.0014 0.0997 ± 0.0014 0.5130 ± 0.1257

10000 1.0000 ± 0.0010 0.0999 ± 0.0011 0.4965 ± 0.1052

Table 1: Performance analysis of the method of moments (MoM) for the estimation of µ, σ, and k

from simulation experiment with µ = 1.0, σ = 0.1, and k = 0.5.

Sample µ σ k

size MoM MoM MoM

20 1.0004 ± 0.0248 0.0800 ± 0.0224 1.9347 ± 1.3341

50 1.0005 ± 0.0156 0.0879 ± 0.0170 1.5211 ± 0.8959

100 1.0001 ± 0.0108 0.0937 ± 0.0113 1.2375 ± 0.4575

1000 1.0000 ± 0.0035 0.0995 ± 0.0038 1.0111 ± 0.1541

5000 1.0000 ± 0.0015 0.0999 ± 0.0017 1.0030 ± 0.0665

10000 1.0000 ± 0.0011 0.1000 ± 0.0012 1.0013 ± 0.0467

Table 2: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 0.1, and k = 1.0.
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Sample µ σ k

size MoM MoM MoM

20 1.0013 ± 0.0497 0.1150 ± 0.0328 2.5952 ± 1.7003

50 1.0004 ± 0.0301 0.1070 ± 0.0301 3.0306 ± 1.7779

100 1.0001 ± 0.0206 0.1016 ± 0.0280 3.2852 ± 1.7903

1000 1.0000 ± 0.0061 0.0955 ± 0.0179 3.3746 ± 1.2251

5000 1.0000 ± 0.0027 0.0989 ± 0.0070 3.0595 ± 0.3267

10000 1.0000 ± 0.0019 0.0994 ± 0.0046 3.0294 ± 0.1939

Table 3: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 0.1, and k = 3.0.

Sample µ σ k

size MoM MoM MoM

20 1.0015 ± 0.2240 0.7713 ± 0.2132 1.7712 ± 1.2748

50 0.9999 ± 0.1427 0.8716 ± 0.1392 1.2161 ± 0.6424

100 1.0016 ± 0.1015 0.9240 ± 0.0913 0.9572 ± 0.3490

1000 0.9998 ± 0.0320 0.9838 ± 0.0295 0.6152 ± 0.1777

5000 1.0000 ± 0.0143 0.9963 ± 0.0143 0.5171 ± 0.1255

10000 0.9999 ± 0.0102 0.9989 ± 0.0106 0.4956 ± 0.1049

Table 4: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 1.0, and k = 0.5.
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Sample µ σ k

size MoM MoM MoM

20 1.0013 ± 0.2486 0.7969 ± 0.2239 1.9422 ± 1.3136

50 1.0065 ± 0.1539 0.8770 ± 0.1689 1.5325 ± 0.8834

100 1.0018 ± 0.1088 0.9369 ± 0.1126 1.2380 ± 0.4534

1000 1.0002 ± 0.0348 0.9958 ± 0.0379 1.0088 ± 0.1535

5000 0.9998 ± 0.0153 0.9988 ± 0.0171 1.0029 ± 0.0681

10000 1.0000 ± 0.0111 0.9994 ± 0.0121 1.0021 ± 0.0471

Table 5: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 1.0, and k = 1.0.

Sample µ σ k

size MoM MoM MoM

20 1.0103 ± 0.5065 1.1422 ± 0.3297 2.6308 ± 1.7389

50 0.9958 ± 0.3012 1.0641 ± 0.2995 3.0486 ± 1.7817

100 0.9977 ± 0.2037 1.0175 ± 0.2816 3.2877 ± 1.7990

1000 1.0004 ± 0.0613 0.9564 ± 0.1771 3.3638 ± 1.2173

5000 1.0001 ± 0.0272 0.9902 ± 0.0672 3.0547 ± 0.2952

10000 1.0005 ± 0.0193 0.9952 ± 0.0460 3.0254 ± 0.1905

Table 6: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 1.0, and k = 3.0.
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Sample µ σ k

size MoM MoM MoM

20 0.9904 ± 1.1352 3.8792 ± 1.0553 1.7450 ± 1.2221

50 0.9962 ± 0.7164 4.3631 ± 0.6859 1.2064 ± 0.5706

100 0.9960 ± 0.5061 4.6063 ± 0.4508 0.9687 ± 0.3416

1000 0.9990 ± 0.1573 4.9278 ± 0.1467 0.6060 ± 0.1803

5000 1.0004 ± 0.0709 4.9858 ± 0.0716 0.5096 ± 0.1286

10000 0.9999 ± 0.0505 4.9941 ± 0.0531 0.4954 ± 0.1044

Table 7: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 5.0, and k = 0.5.

Sample µ σ k

size MoM MoM MoM

20 0.9982 ± 1.2551 4.0027 ± 1.1303 1.9508 ± 1.3655

50 1.0167 ± 0.7744 4.4116 ± 0.8317 1.5112 ± 0.8648

100 0.9962 ± 0.5444 4.6807 ± 0.5573 1.2387 ± 0.4347

1000 0.9980 ± 0.1743 4.9801 ± 0.1895 1.0097 ± 0.1514

5000 1.0011 ± 0.0773 4.9945 ± 0.0838 1.0023 ± 0.0661

10000 0.9989 ± 0.0559 4.9980 ± 0.0606 1.0012 ± 0.0473

Table 8: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 5.0, and k = 1.0.
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Sample µ σ k

size MoM MoM MoM

20 0.9317 ± 2.4752 5.6880 ± 1.6528 2.6572 ± 1.7507

50 0.9953 ± 1.5184 5.3792 ± 1.5081 3.0103 ± 1.7866

100 1.0078 ± 1.0237 5.1089 ± 1.3623 3.2308 ± 1.7037

1000 1.0050 ± 0.3007 4.7678 ± 0.8955 3.3770 ± 1.2140

5000 0.9982 ± 0.1362 4.9451 ± 0.3535 3.0610 ± 0.3204

10000 1.0000 ± 0.0959 4.9786 ± 0.2310 3.0238 ± 0.1929

Table 9: Performance analysis of the MoM for the estimation of µ, σ, and k from simulation

experiment with µ = 1.0, σ = 5.0, and k = 3.0.
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