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Abstract

In present paper we generalize the classical newsvendor problem for
critical perishable commodities having more severe costs than its linear
alternative. Piecewise polynomial cost functions are introduced to accom-
modate the excess severity. Stochastic demand is assumed to follow a
complete unknown probability distributions. Non parametric estimator
of the optimal order quantity has been developed from a random polyno-
mial type estimating equation using a random sample. Strong consistency
of the estimator is proved for unique optimal order quantity and the re-
sult is extended for multiple solutions. Simulation results indicate that
non parametric estimator is efficient in terms of mean square error.

Keywords: Stochastic programming, Non-parametric Estimation, Monte-Carlo
Simulation, Newsvendor Problem, Strong Consistency, Non-linear Optimisa-
tion

1 Introduction

Newsvendor problem deals with determination of optimal order quantity of
a perishable commodity by offsetting piece-wise linear shortage and excess

*phd2001161004@iiti.ac.in
†sujaym@iimidr.ac.in
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costs and without allowing any backlog. The decision for a single period
problem is taken at the beginning, i.e. before the random demand is realised
[see Chernonog and Goldberg, 2018, and the references therein]. However,
perishable critical resources would often warrant shortage and excess costs to
be more severe than linear. For example, chemotherapy drugs are adminis-
tered to patients as per a schedule. Shortage of the drug on the scheduled
day would result in breaking of the treatment cycle. Here the loss is more
severe than merely the quantity lost. Similarly, excess inventory of critical
drugs or chemical resources might cause vast environmental and microbial
hazards during disposal of the excess material. In this work, we discuss a
piece-wise non-linear alternative to the classical newsvendor model to accom-
modate severity in the decision [Ghosh et al., 2021, Halman et al., 2012].

Non-linear newsvendor problem has been studied only recently in the lit-
erature. Parlar and Rempala [1992] considered the periodic review inventory
problem and derived the solution of a newsvendor problem with a quadratic
cost function. Gerchak and Wang [1997] described optimal order quantity
determination from a newsvendor problem with linear excess but quadratic
shortage cost. Pal et al. [2015] used exponential weight function of order quan-
tity to the holding cost and linear excess cost in a newsvendor set-up. Kypari-
sis and Koulamas [2018] addressed the newsvendor problem for quadratic
utility function. Khouja [1995], Chandra and Mukherjee [2005], among oth-
ers, considered optimisation of reliability function of the stochastic cost. In
this paper, we consider generalisation of the classical newsvendor problem by
modelling the severity of shortage and excess costs. In particular, we intro-
duce measurable and continuous non-linear weights to the two types of costs
and establish the conditions for existence of the optimal order quantity.

A critical issue with the optimal order quantity determination in classical
newsvendor problem is the lack of knowledge on random demand. Majority
of the works assume a completely specified demand distribution, whereas in
reality, it is seldom so. In case of unknown demand distribution, paramet-
ric and distribution-free estimation of the optimal order quantity has been
considered more recently. Parametric estimation of the optimal order quan-
tity has been studied by Nahmias [1994] and more recently, Kevork [2010]
for Normal demand. Agrawal and Smith [1996] estimated the order quantity
for negative binomial demand. Rossi et al. [2014] has given bounds on the
optimal order quantity using confidence interval for parametric demand dis-
tributions. Ghosh et al. [2021] estimated optimal order quantity for uniform
and exponential demands in non-linear newsvendor problem.

Distribution free estimation of optimal order quantity, on the other hand,
has been studied in two parallel ways in the context of classical newsvendor
problem. In the first case, the investigator has access to population summary
measures like mean, variance etc, but the demand distribution remains un-
known [Bai et al., 2020]. Scarf [1958] and later Moon and Gallego [1994] stud-
ied the min-max optimal order quantity in such cases. The second approach
considers the estimation problem based on an uncensored random sample
from the unknown demand distribution. Pal [1996], Bookbinder and Lordahl
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[1989] discussed construction of bootstrap based point and interval estimator
of the optimal order quantity using demand data. The sampling average ap-
proximation (SAA) method [see Kleywegt et al., 2001, Linderoth et al., 2006],
replaces the expected cost by the sample average of the corresponding ob-
jective function and then optimises it. Levi et al. [2015] provides bounds of
the relative bias of estimated optimal cost using SAA based on uncensored
demand data. However, not much work has been done on non-parametric
estimation of optimal order quantity in non-linear newsvendor problems.

In this paper we devise a non-parametric technique to estimate the opti-
mal order quantity in the generalised model. Our study makes two unique
contributions to the literature. First, we develop a non-parametric estimator
of the optimal order quantity in a generalised newsvendor set-up, which has
not been attempted in the literature to the best of our knowledge. The non-
parametric estimator is developed from an estimating equation using an un-
censored random sample on stochastic demand. The feasibility of obtaining
solutions to the estimating equation has been derived in almost-sure sense
using its random polynomial representation. We have studied the asymp-
totic performance of the estimated optimal order quantity. We have shown
strong consistency of the optimal order quantity estimator when the true one
is unique. We also present the extension of the above strong consistency re-
sult in both the cases, where true optimal order quantity is not unique or both
true and estimated optimal order quantities are not unique. Next, we have
provided a simulation based way to estimate the probabilities of existence of
feasible roots of a random polynomial and the distribution of the roots in the
generalised newsvendor context. Our results on the properties of the esti-
mated optimal order quantity are based on 3 million simulation experiments
for Uniform and Exponential demand distributions. We compute the optimal
order quantities for the two demand distributions and study the properties
of the probability distribution of the estimated optimal order quantity. Since
the existence of the estimator of optimal order quantity is not guaranteed,
we provide a way to use the simulation results for computing the probabil-
ities of their existence for different combinations of severity and cost for a
large sample size of 10000. We also present the performance study of the
non-parametric estimator, in small and large samples, using the mean square
errors. The paper concludes with a discussion on the findings.

2 Symmetric Generalised Newsvendor Problem

We consider a single-period newsvendor problem where, excess inventory
is disposed of at the end of the period with no salvation cost. We assume
instantaneous replenishment of order quantities. Our work considers a case
where the severity of the excess and shortage are more than the quantity lost
( i.e the gap between inventory and demand). We also assume absence of any
influencing factors like marketing efforts,promotions,discounts etc.

Let the stochastic demand be represented by a random variable X with
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a compact support X ⊆ R+ defined over the complete probability space
(Ω,F , P), where F is the σ-algebra over Ω. In this paper we do not con-
sider pre-booking, which in turn implies 0 ∈ X . Further, let Ce (0 < Ce < ∞)
and Cs (0 < Cs < ∞) be the excess and shortage costs per unit respectively.
Then the cost function in classical newsvendor set-up at an inventory level Q
is given by

C(Q, X) =

{
Ce(Q− X), i f X ≤ Q
Cs(X−Q), i f X > Q (1)

Related stochastic programming problem under the assumption of existence
of EG[X], is given by

argmin
Q∈X

EG[C(Q, X)] (2)

where G(·) is the induced probability distribution of X defined over the mea-
surable space (R+,B+), where B+ is the corresponding Borel-algebra. We
consider generalisation of quadratic cost function by introducing polynomial
weights (in Q and X) of degree m (say, P1,m(Q, X) and P2,m(Q, X)) to shortage
and excess respectively. Degree of the polynomials (m) represents the (equal)
severity of shortage and excess. If m = 0, then the problem reduces to classical
newsvendor problem. The severity polynomials should satisfy the following
properties:

(a) for a given X, Pi,m(Q, X) is continuously differentiable with respect to
Q (∈ X ) for i = 1, 2, up to order m

(b) The mth derivative of Pi,m(Q, X) is finite, i = 1, 2.

(c) If for any convergent sequence {Xn} in X , Xn
a.s.→ Q, then Pi,m(Q, Xn)

a.s.→
0 for i = 1, 2 (a.s. ⇒ almost sure).

Based on the above properties, a natural choice for the severity polynomials
are as follows:

P1,m(Q, X) =
m−1

∑
j=0

(−1)m−1−j
(

m− 1
j

)
QjXm−1−j = (Q− X)m−1 (3)

P2,m(Q, X) =
m−1

∑
j=0

(−1)m−1−j
(

m− 1
j

)
Qm−1−jX j = (X−Q)m−1 (4)

The constant m is integer valued and m− 1 could be interpreted as the severity
constant. As m increases, more severe is the loss. For m = 1, no extra severity
is implicated and the problem reduces to the classical newsvendor problem.
Thus the new cost function for generalised newsvendor is given by

Cm(Q, X) =

{
Ce(Q− X)m, i f X ≤ Q
Cs(X−Q)m, i f X > Q (5)
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The new cost functions could also be interpreted as a generalisation of con-
stant costs per unit (Ce, Cs) model to demand and inventory dependent cost
models, viz. Ce(Q− X)m−1 and Cs(X−Q)m−1 respectively.

In view of the above weight function structure, we now make the following
assumptions about the probability distribution of demand (X):

A1. X is independent of Q

A2. G is continuous and strictly increasing over the support X

A3. Xm is G-integrable ∀ m ≥ 0

The assumption A1 is required to avoid the trivial solution of zero order quan-
tity, which may arise for certain choices of demand distribution, the degree of
severity (m) and the costs (Ce, Cs). For example, if the demand is Uni f (0, 2Q)
then for Ce = Cs, the optimum order quantity would become zero. Hence, we
make further assumption of Ce 6= Cs.

The expected cost function in this case can be written as,

EG[Cm(Q, X)] =
∫

SQ

Ce(Q− x)P1,m(Q, x)dG+
∫

S′Q
Cs(x−Q)P2,m(Q, x)dG (6)

where SQ = {ω ∈ Ω | X(ω) ∈ (0, Q)}, S′Q = X \ SQ and EG denotes expecta-
tion with respect to G.

Differentiating Eq. 6 with respect to Q using Leibnitz rule, we get the first
order condition for the minimisation problem stated above as follows

∂EG[Cm(Q, X)]

∂Q
= 0

⇒
∫

SQ

Ce(Q− X)m−1dG =
∫

S′Q
Cs(X−Q)m−1dG

⇒ Ce

∫
SQ

(Q− X)m−1dG = Cs

[∫
X
(X−Q)m−1dG−

∫
SQ

(X−Q)m−1dG

]

⇒
∫

SQ

(Q− X)m−1dG =
Cs[

Ce + Cs(−1)m−1
] ∫

X
(X−Q)m−1dG

⇒
EG

[
(Q− X)m−1I(SQ)

]
EG[(X−Q)m−1]

= km (7)

where, I(SQ) is an indicator function over the set SQ and km = Cs
Ce+(−1)m−1Cs

.

Denoting
∫

SQ
(Q− X)idG = θ1,i and E(X − Q)i = θ2,i, ∀ i = 1, 2, . . ., Eq. 7 can

be written as
h(∼θ, Q) =

θ1,m−1

θ2,m−1
= km (8)

Let us define the jth partial raw moment of X as δj =
∫

SQ
X jdG and the jth raw

moment of X by µ′j =
∫
X X jdG ∀j = 1, 2, . . .. Further let, the optimal expected
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cost be denoted by ϕ∗m and the corresponding set of optimal order quantities
by U ∗, which are obtained by solving the population stochastic minimisation
problem in Eq. 9. Next we show that U ∗ is non-empty, i.e. at least one feasible
solution to Eq. 8 exists.

Theorem 2.1. Consider the stochastic minimisation problem in a SyGen-NV set-up
as follows,

argmin
Q∈X

EG[Cm(Q, X)] (9)

where X is the positive demand defined over the probability space (Ω,F , P) and Q
is order quantity. Under the assumptions A1-A3, at least one positive solution to the
stochastic minimisation problem exists.

Proof. From the first order condition in Eq. 8, we notice that

∫
SQ

(Q− X)m−1dG = km(−1)m−1
∫
X
(Q− X)m−1dG, (Q ∈ X )

⇒
∫

SQ

m−1

∑
j=0

(
m− 1

j

)
Qm−1−j(−1)jX jdG = km(−1)m−1

∫
X
(Q− X)m−1dG

⇒
m−1

∑
j=0

(
m− 1

j

)
Qm−1−j(−1)j

[∫
SQ

X jdG− km(−1)m−1
∫
X

X jdG

]
= 0.

⇒
m−1

∑
j=0

(
m− 1

j

)
Qm−1−j(−1)j[δj − (−1)m−1kmµ′j] = 0

⇒
m−1

∑
j=0

(−1)jβ jQm−1−j = 0, where β j =

(
m− 1

j

)
[δj − (−1)m−1kmµ′j] (10)

Odd values of m (m = 2d+ 1) ensures that km lies in the interval (0, 1) and
β j = (2d

j )[δj − k2d+1µ′j]. Letting Q → 0, it is observed that, δ2d → 0, resulting

in lim
Q→0

β2d = −k2d+1µ′2d < 0 so that lim
Q→0

2d

∑
j=0

(−1)jβ jQ2d−j = β2d < 0 .

On the other hand, it is possible to choose a large Q, say Q0, so that
δj ≈ µ′j, ∀j = 0, 1, . . . 2d, whenever Q ≥ Q0. In that case, β j → τj, where, τj =

(2d
j )µ
′
j(1− k2d+1) > 0, ∀j = 0, 1, . . . 2d. Choosing Q0 = max

{
τ2j+1

τ2j
: j = 0, 1, . . . (d− 1)

}
,

we, therefore, obtain
2d

∑
j=0

(−1)jτjQ2d−j = τ0Q2d − τ1Q2d−1 + . . . + τ2d−2Q2 − τ2d−1Q + τ2d

= Q2d−1(τ0Q− τ1) + Q2d−4(τ2Q− τ3) + . . .
+Q(τ2d−2Q− τ2d−1) + τ2d

> 0, for Q > Q0
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Thus, the polynomial in Eq. 10 is negative when Q → 0 and is positive for
large Q (i.e. Q > Q0). Hence, presence of a positive solution of Eq. 10 follows
from the well known Bolzano’s theorem on zero of continuous functions.

Even values of m (m = 2d) ensures that either km > 0 or km < −1. The
first case is given by 0 < k2d and β j = (2d−1

j )[δj − k2dµ′j]. Letting Q → 0, it
is observed that, δ2d−1 → 0, resulting in lim

Q→0
β2d−1 = k2dµ′2d−1 > 0 so that

lim
Q→0

2d−1

∑
j=0

(−1)jβ jQ2d−1−j = (−1)2d−1β2d−1 = −β2d−1 < 0 .

Choosing a large Q, say Q1, implies δj ≈ µ′j, ∀j = 0, 1, . . . 2d− 1, whenever

Q ≥ Q1. Here, β j → τj = (2d−1
j )µ′j(1 + k2d) > 0, ∀j = 0, 1, . . . 2d− 1. Q1 is

selected as Q1 = max

{
τ2j+1

τ2j
: j = 0, 1, . . . (d− 1)

}
. Therefore the polynomial

Eq. 10 is obtained as,

2d−1

∑
j=0

(−1)jτjQ2d−1−j = τ0Q2d−1 − τ1Q2d−2 + . . . + τ2d−2Q− τ2d−1

= Q2d−2(τ0Q− τ1) + Q2d−4(τ2Q− τ3) + . . .
+τ2d−2Q− τ2d−1

> 0, for Q > Q1

similar argument as the previous case guarantees that a positive solution of
the stochastic minimisation problem exists.

The second case is given by k2d < −1 and β j = (2d−1
j )[δj + k2dµ′j]. Letting

Q → 0, it is observed that, δ2d−1 → 0, resulting in lim
Q→0

β2d−1 = k2dµ′2d−1 < 0

so that lim
Q→0

2d−1

∑
j=0

(−1)jβ jQ2d−1−j = (−1)2d−1β2d−1 = β2d−1 > 0 .

A large value of Q, say Q2, indicates that δj ≈ µ′j, ∀j = 0, 1, . . . 2d − 1,

whenever Q ≥ Q2. In that case, β j → τj, where, τj = (2d−1
j )µ′j(1− |k2d|) =

−(2d−1
j )µ′j(|k2d| − 1) = −κj < 0, ∀j = 0, 1, . . . 2d − 1. κj is obtained as κj =

(2d−1
j )µ′j(|k2d| − 1) > 0, ∀j = 0, 1, . . . 2d− 1. The polynomial is written as

2d−1

∑
j=0

(−1)j+1κjQ2d−1−j = −κ0Q2d−1 + κ1Q2d−2 + . . .− κ2d−2Q + κ2d−1

= Q2d−2(κ1 − κ0Q) + Q2d−4(κ3 − κ2Q) + . . .
+κ2d−1 − κ2d−2Q

< 0, for Q > Q2

The choice of Q2 is described as Q2 = max

{
κ2j+1

κ2j
: j = 0, 1, . . . (d− 1)

}
. Sim-
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ilar argument as previous one establishes the existence of the positive solution.
Since there could be many positive roots, we select the one with minimum

expected cost.

3 Non-parametric optimal order quantity estima-
tion in SyGen-NV

In this section, we present non-parametric estimation of the optimal order
quantity, when the demand distribution is completely unknown, but historical
uncensored demand data are available. Let us denote an uncensored random
sample of size n by ∼X = (X1, X2, ..., Xn)′ drawn from G. We define two statis-

tics Tin(∼X) : R+n → R+, (i = 1, 2) as T1n =
1
n

n

∑
i=1

(Q− Xi)
m−1I(Xi ≤ Q) and

T2n =
1
n

n

∑
i=1

(Xi −Q)m−1. Then the sample version of the first order condition

in Eq. 9 can be constructed by replacing θi,m−1 with corresponding Tin, i=1,2.
The estimating equation can be written as

h(∼Tn; Q) =
T1n
T2n

= km (11)

Further, we define sample partial and complete raw moments of order j as

dj =
1
n

n

∑
i=1

X j
i I(Xi ≤ Q) and m′j =

1
n

n

∑
i=1

X j
i . It can be easily observed that

the sample raw moments dj and m′j are unbiased estimators of δj and µ′j.

Hence, β̂ j = (m−1
j )[dj − (−1)m−1kmm′j] is the unbiased estimator of β j. We

then construct the sample version of the first order condition provided in
Eq. 10 as

m−1

∑
j=0

(−1)j β̂ jQm−1−j = 0 (12)

where β̂ j is as defined above. We would refer to h(∼Tn; Q) as estimating func-
tion and the polynomial in the alternative form of the first order condition
in Eq. 12 as the random polynomial estimating function or simply random
polynomial.

3.1 Properties of Tn
∼

Some important properties of Tin, i = 1, 2 are as follows.

P1. Ti,n is unbiased for θi,m−1, i = 1, 2.
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P2. Ti,n
a.s.→ θi,m−1 as n→ ∞

P3.
√

n(Tin − θi,m−1)
L→ N(0, σ2

i,n), where nσ2
i,n = θi,2m−2 − θ2

i,m−1, i = 1, 2

and the symbol L→ stands for convergence in distribution.

Proof of P1 is immediate by taking expectation of Ti,n. P2 follows from Kol-
mogorov’s strong law of large number [see pp-115 Rao, 1973] and the fact
that each of Ti,n, i = 1, 2 is an average of independently and identically dis-
tributed (iid) random variables satisfying existence of variance by assumption
A3 stated above. P3 is also straight forward from Lindeberg-Levy central limit
theorem for iid samples Rao [1973].

3.2 Properties of h(Tn
∼

; Q)

We begin with the statement of the following properties of h(∼Tn; Q).

P4 h(∼Tn; Q) is a measurable function over (R+n,Bn) for every Q ∈ X .

P5 h(∼Tn; Q) is continuously differentiable with respect to Q within the com-
pact set X a.e Bn.

Property P4 of h(∼Tn; Q) is straight forward from the fact that it is a ratio of two
measurable functions (viz. polynomials) for every Q ∈ X . The next property
follows from the facts that T1n and T2n are positive a.e R+n for every Q ∈ X
and ratio of non-zero polynomials are differentiable.

In what follows, we provide the asymptotic distribution of the random
function h(∼Tn; Q) for every Q ∈ X . First we state an important result, called
the delta method for asymptotic normality of a one time differentiable func-
tion.

Theorem 3.1 (Delta Method DasGupta [2008]). Suppose ∼Wn is a sequence of k-

dimensional random vectors such that
√

n( ∼Wn − ∼θ)
L→ Nk(∼0, Σ). Let g : Rk → R

be once differentiable at θ with the gradient vector g(1)(θ). Then
√

n(g( ∼Wn)− g(∼θ))
L→ N(0, g(1)

′
(θ)Σg(1)(θ)) (13)

We now prove the asymptotic normality of h(∼Tn; Q) in the following theo-
rem.

Theorem 3.2. Consider the estimating function h(∼Tn; Q) in Eq. 11. Then for large
n

√
n(h(∼Tn; Q)− h(∼θ; Q))

L→ N
(

0, ∼h
(1) ′ Σ ∼h

(1)
)

(14)

where Σ is the dispersion matrix of ∼Tn, ∼h
(1) is the 1st vector derivative of h(∼Tn; Q)

with respect to ∼Tn evaluated at ∼θ and

∼h
(1) ′ Σ ∼h

(1) = h(∼θ; Q)2

[
θ1,2m−2

θ2
1,m−1

+
θ2,2m−2

θ2
2,m−1

+ 2(−1)m θ1,2m−2

θ1,m−1θ2,m−1

]

9



Proof. The co-variance between T1n and T2n is

σ12;n = Cov(T1n, T2n)

= Cov

(
1
n

n

∑
i=1

(Q− Xi)
m−1 I(Xi ≤ Q),

1
n

n

∑
i=1

(Xi −Q)m−1

)

=
1
n2

n

∑
i=1

Cov((Q− Xi)
m−1 I(Xi ≤ Q), (Xi −Q)m−1)

=
1
n

[
(−1)m−1θ1,2m−2 − θ1,m−1θ2,m−1

]
(15)

From the property P3 and Eq. 15, it could be easily seen that
√

n
(
∼Tn − ∼θ

)
is

asymptotically multivariate normal with dispersion matrix Σ = ((σij;n)), i, j =
1, 2 and σii;n = σ2

i,n. Also, note that Tin > 0 a.e. R+n, i = 1, 2 and h(∼Tn; Q)

is once differentiable for every Q ∈ X . We denote the 1st derivative of

∼h(∼Tn; Q) by ∼h
(1) = (h1(∼θ; Q), h2(∼θ; Q))′ =

(
1

θ2,m−1
, − θ1,m−1

θ2
2,m−1

)′
, where hi(∼θ; Q) =

∂h(∼Tn ;Q)

∂Tin

∣∣∣∣
∼Tn=∼θ

for i = 1, 2. Thus, using routine algebra it can be easily shown

that

∼h
(1) ′ Σ ∼h

(1) = h(∼θ; Q)2

[
σ2

1n
θ2

1,m−1
+

σ2
2n

θ2
2,m−1

− 2
σ12,n

θ1,m−1θ2,m−1

]

=
h(∼θ; Q)2

n

[
θ1,2m−2

θ2
1,m−1

+
θ2,2m−2

θ2
2,m−1

+ 2(−1)m θ1,2m−2

θ1,m−1θ2,m−1

]

The proof of the theorem is then immediate from the delta method (Th. 3.1).

3.3 Solution of the estimating equation

In this section we present the statistical properties of the estimated optimal
order quantity and the optimal value function. We denote by ϕ̂∗m the estimated
optimal cost function and the corresponding set of estimated optimal order
quantities are denoted by Û ∗. In the following theorem we prove that Û ∗ is
non-empty with probability (wp) 1, i.e there exists at least one positive solution
to Eq. 11 wp 1.

Theorem 3.3. Under the regularity assumptions A1− A3, the random polynomial
m−1

∑
j=0

(−1)j β̂ jQm−1−j will have positive zeroes wp 1. where β̂ j = dj− (−1)m−1kmmj
′, ∀ j =

1, 2 . . . m− 1.
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Proof. Notice that, dj
a.s→ δj and m′j

a.s→ µ′j, which implies in turn that β̂ j
a.s→ β j.

Thus the proof of this theorem is same as that of Th. 2.1 in almost sure sense.
We omit the details to avoid repetition.

Next we show that any solution to the estimating equation converges to
the true optimal order quantity in SyGen-NV problem. Let the solution of
the estimating equation Eq. 11 (or Eq. 12) be denoted by Q̂∗n. We show that
the solution is strongly consistent for the solution to the stochastic optimisa-
tion problem argmin

Q∈X
EG

[
Cm(Q, X)

]
under mild regularity conditions. First

we state the following theorem without proof on existence of optima of a
continuous function on a compact set.

Theorem 3.4 (Extreme Value Theorem [see Stein and Shakarchi, 2010]). A
continuous function on a compact set X is bounded and attains a maximum and
minimum on X .

We state the next lemma on the compactness of the complement of an open
subset of a compact set.

Lemma 3.5. Let X be a compact set and O be an open subset of X . Then Ō = X \O,
denoting the complement of O in X , is also a compact set.

The proof is a routine exercise in real analysis and hence is omitted.

Theorem 3.6. Let Q̂∗n ∈ X be the unique solution to the estimating equation
h(∼Tn; Q) = km and Q∗ uniquely solves the stochastic programming problem

argmin
Q∈X

EG

[
Cm(Q, X)

]
Then

Q̂∗n
a.s.→ Q∗ (16)

Proof. Let O ⊆ X denote an arbitrary open neighbourhood of Q∗. From
lemma 3.5, the complement of O, Ō = X \ O is also a compact set. No-
tice that the expected cost EG[Cm(X, Q)] (= ϕm(Q), say), is a continuous
function of Q. Hence, from Theorem 3.4, the stochastic optimisation prob-
lem argmin

Q
ϕm(Q) will have a solution in Ō with unique minimum value of

ϕm(Q). Let us denote, r = min
Q∈Ō

ϕm(Q)− ϕm(Q∗) > 0.

Also, from property P2 of Tin, (i = 1, 2) and the continuous mapping
theorem, it can be easily seen that h(∼Tn, Q)

a.s.→ h(∼θ, Q), ∀ Q ∈ X . Since Q̂∗n ∈
X , there would exist n0(ε) for every ε > 0, such that | h(∼θ, Q̂∗n) − km |< ε,
∀ n ≥ n0(ε), wp 1. Therefore ∃ n > n0(ε) for every 0 < ε < r

2 , so that

|h(θ, Q̂∗n)− h(θ, Q∗)| < ε, ∀ n > n0(ε), wp 1 (17)

This implies Q̂∗n /∈ Ō. O being arbitrary, Q̂∗n
a.s.→ Q∗.
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The roots of the FOC (Eq. 10) may not be unique. Let the set of correspond-
ing distinct roots be denoted by Q∗ = {Q∗1 , Q∗2 . . . Q∗k}, k = 1, 2 . . . m− 1. Sim-
ilarly, there could be p (≥ 1) roots of the random polynomial (Eq. 12), say
Q̂∗ = {Q̂∗1 , Q̂∗2 . . . Q̂∗p}. In the next two corollaries, we extend Theorem 3.6 for
multiple roots.

Corollary 3.6.1. Let Q̂∗ be the set of distinct roots of the random polynomial (Eq. 12)
and Q∗ be unique solution to the stochastic minimisation problem (9). Then Q̂∗max

a.s→
Q∗, where Q̂∗max = max{Q̂∗}.
Proof. Notice, the maximum of Q̂∗ is unique. Hence, from Th. 3.6, the proof
is immediate.

Corollary 3.6.2. Let Q̂∗n be the unique solution to the random polynomial equation
Eq. 12 and Q∗ be the set of distinct solutions to the stochastic minimisation problem
(9). Then Q̂∗ a.s→ Q∗i ; for exactly one i; i = i = 1, 2, . . . , k.

Proof. Let Oi denote an arbitrary open neighbourhood around Q∗i selected
in such a way that Oi’s are disjoint. Then, O = ∪k

i=1Oi is also an open set.
Implementing the same argument as Theorem 3.6 we ensure that Q̂∗n ∈ O.
Disjoint property of Oi indicates Q̂∗n ∈ Oi for exactly one i.

Corollary 3.6.3. Let Q̂∗ be the set of distinct solutions to the random polynomial
equation Eq. 12 and Q∗ is the set of distinct solutions of the FOC Eq. 10, then
Q̂∗max

a.s→ Q∗i ; for exactly one i; i = i = 1, 2, . . . , k.

Proof. Proof immediately follows from previous two corollaries.

From the above theorem, it can be easily seen that the estimated optimal
cost ϕ̂∗n = ϕm(Q̂∗) almost surely converges to the true optimal cost ϕ∗m, using
the continuity of the cost function ϕm(Q).

4 Monte-Carlo Simulation experiments

In this section we present the results of Monte-Carlo simulation experiments
on the non-parametric estimator of the optimal order quantity in SyGen-NV
set-up. We consider here two known probability distributions for the demand,
viz. Uni f orm(0, 1) and Exp(1). The severity index m is assumed to be known
(∈ {2, 3, 4, 5, 10}). Further, we take the excess-to-shortage cost ratio, λ (=
Ce
Cs
) ∈ {0.25, 0.45, 0.65, 0.85, 1.05, 1.25, 1.45, 1.65, 1.85}. For each of the (m, λ)

pairs, we compute numerically the optimal order quantities for both Uni f orm
and Exponential true demands. Further, we conduct 3.15 million Monte-Carlo
simulation experiments for each of the demand distributions to understand
the small and large sample properties of the non-parametric estimator. In
particular, we draw random samples of size n (= 20, 50, 100, 500, 1000, 5000,
10000) for each combination of (λ, m) and estimate the optimal order quanti-
ties Q̂∗n therefrom. We repeat this process for M times (M = 5000). We study
the sampling properties of Q̂∗n from these M estimates.

12



4.1 Uni f (0, 1) Demand distribution

The optimal order quantity in the SyGen-NV problem with Uni f (0, 1) de-
mand is given by [Ghosh et al., 2021]

Q∗n =
1

1 + λ
1
m

Q̂∗n can be obtained, on the other hand, from the estimating equation (Eq. 12).
The probability distribution of the estimated order quantity is presented in
the form of box-plots in Fig. 1. For λ < 1, the probability distributions of
Q̂∗n are stochastically larger with increasing severity levels, the distribution for
m = 2 being centred at the highest value among all others. For λ > 1, the
distributions of estimated order quantity for even m are different than those of
the odd m. Odd severity seems to result in stochastically smaller distribution
of Q̂∗n. The variation, on the other hand, seems to decrease with severity for
all λ.

Next we present the performance study of Q̂∗n using the mean square error

(MSE) computed from the M estimates as MSE =
1
M

M

∑
i=1

(Q̂∗in − Q∗n)
2. Fig-

ures 2a-2i in the appendix presents the MSE’s plotted against sample sizes. It
could be seen that for λ < 1, the MSEs converge to 0 with increasing n for all
m, with worst performance of Q̂∗n observed at m = 2. For λ > 1, however, the
convergence is slow in case of even m.

4.2 Exp(1) Demand distribution

The optimal order quantity in the SyGen-NV problem with Exp(1) demand
can be obtained from the random polynomial (Eq. 10) by replacing the partial
and full raw moments by those for the Exp(1) distribution. The modified
equation is given as [Ghosh et al., 2021]

m−1

∑
j=0

(−1)j (Q)m−j−1 1
(m− j− 1)!

= e−Q
[

Cs

Ce
− (−1)m

]

As described in the uniform case, Q̂∗n can be obtained from the estimating
equation (Eq. 12).

Unlike the uniform demand case, probability distribution of the estimated
optimal order quantity increases stochastically with severity for all λ (see
Fig. 3). Not only the location, the scale (or variance) of the distribution also
increases with m.

In terms of MSE, Q̂∗n performs well asymptotically as the MSE (vs. n)
curve (see Fig. 4a-4i) decreases to zero with increasing sample size (for all m
and λ), the worst performance being observed for m = 10. The best estimator,
in the MSE sense, is obtained for m = 2 when λ < 1. However, for λ > 1
performance of Q̂∗n for m = 2 worsens in small samples.
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5 Discussion

In this paper we have discussed non-parametric estimation of the optimal or-
der quantity in case of a general newsvendor problem, where the severity of
the losses are much more than merely the quantity lost. Major contributions
of this paper are two-fold. First we have constructed a non-parametric esti-
mation method for the optimal order quantity in the SyGen-NV problem with
power type shortage and excess. Secondly, we have studied the properties
and performances of the estimators of the optimal order quantities.

Our contribution in the non-parametric estimation of the optimal order
quantity starts with formulation of an estimating equation from the first or-
der condition using uncensored demand data. We have presented strong con-
sistency of the estimating function and its asymptotic distribution has been
derived. Further, we have presented a random polynomial representation of
the estimating equation and established feasibility of the solution by deriving
conditions for existence of the zeroes of the random polynomial in almost sure
sense. We have also proven the strong consistency of the estimated optimal
order quantity.

The theoretical results in this paper has been supported by an exhaus-
tive set of simulation experiments. In particular, we have considered known
uniform and exponential as true demand distributions. The distribution of
the estimated optimal order quantities suggests that odd and even order of
severity influences the estimates differently for uniform demand, whereas for
exponential demand, the estimate increases uniformly with severity. Compar-
ing the mean square errors for different sample sizes, severity and cost-ratio,
it has been found that the estimators perform well in the MSE sense when
severity is high in case of uniform demand and the opposite for exponential
distribution.

We conclude the paper with comments on future scope of research. A nat-
ural extension of the SyGen-NV problem would be to consider asymmetric
weight functions for shortage and excess. Complexity arises due to different
dimensions of the two costs as a result of asymmetric weighing. Baraiya and
Mukhoti [2019] discussed, in an unpublished manuscript, selection of weights
so that the shortage and excess costs remain comparable. However, estima-
tion of optimal order quantity in such asymmetric generalised newsvendor
problem remains open.
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A

A.1 Figures

(a) λ = 0.25 (b) λ = 0.45 (c) λ = 0.65

(d) λ = 0.85 (e) λ = 1.05 (f) λ = 1.25

(g) λ = 1.45 (h) λ = 1.65 (i) λ = 1.85

Figure 1: Boxplot of estimated order quantity for different degrees of severity
(m)
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(a) λ = 0.25 (b) λ = 0.45 (c) λ = 0.65

(d) λ = 0.85 (e) λ = 1.05 (f) λ = 1.25

(g) λ = 1.45 (h) λ = 1.65 (i) λ = 1.85

Figure 2: MSE of estimated order quantity for different degrees of severity (m)
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(a) λ = 0.25 (b) λ = 0.45 (c) λ = 0.65

(d) λ = 0.85 (e) λ = 1.05 (f) λ = 1.25

(g) λ = 1.45 (h) λ = 1.65 (i) λ = 1.85

Figure 3: Boxplot of estimated order quantity for different degrees of severity
(m)
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(a) λ = 0.25 (b) λ = 0.45 (c) λ = 0.65

(d) λ = 0.85 (e) λ = 1.05 (f) λ = 1.25

(g) λ = 1.45 (h) λ = 1.65 (i) λ = 1.85

Figure 4: MSE of estimated order quantity for different degrees of severity (m)
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