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Generalization of the Newsvendor Problem
with gamma demand distribution by

Asymmetric Losses

Rajendra Baraiya∗ and Sujay Mukhoti †1

1Operations Management & Quantitative Techniques Department, Indian
Institute of Management (IIM), Indore, India.

Abstract

Classical newsboy problem has been extended in many directions
to accommodate more realistic inventory scenarios. In this paper we
consider single period inventory problem where the product is short-
lived and the severity of leftover and shortages are not same. Such
a model would play important role in deciding optimum inventory
level of, e.g. greengrocers or supermarkets, among others who are
selling such short-lived items. In this work we introduce the concept
of importance function. Further, we characterize it in terms of the
dimension of the cost function and relation with realized demand and
inventory level. The model we propose considers different importance
for leftover and shortage. We provide the conditions for existence of
feasible solutions of the optimal order quantity determination problem.
We also present results from a number of numerical instances with
specific importance functions. The numerical results show that higher
importance to a type of loss results in conservative inventory orders
in the direction of the corresponding importance.

1 Introduction

Let us consider the classical newsvendor’s problem, who has to decide
the order quantity at the beginning of the period, after which the remaining
inventory expires. With stochastic demand, the problem for the newsvendor

∗e-mail: f17rajendrab@iimidr.ac.in
†e-mail: sujaym@iimidr.ac.in
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is to determine the optimal order quantity so that it balances the losses due
to shortage and leftover. This problem has drawn considerable amount of
attention over past hundred years since its introduction (Harris, 1913) due
to its applicability in analogous problems related to inventory management,
revenue management, supply chain coordination and many others.

In this paper we propose a generalization of the newsvendor problem
with different degree of sensitivity towards leftover and shortage. Classi-
cal newsvendor problem treats these two losses with equal importance and
measures the corresponding cost in proportion to the difference between de-
mand and inventory level with unit importance. However, in many situations
leftover and shortage would warrant different importance. For example, su-
permarkets with perishable commodities would face higher customer churn
in case of shortage (Fitzsimons, 2000), whereas financially constrained ven-
dors like greengrocer or newsboy would find leftover more severe (Dada &
Hu, 2008).

Here we consider the case of a newsvendor, who puts more importance on
leftover than shortage (to be called poor newsvendor henceforth) in absence
of significant salvation cost. Hence, the loss incurred due to leftover inven-
tory should be more severe than merely the quantity of unsold inventory.
Indeed, the severity of leftover would increase with depleting demand. Intu-
itively, here the poor newsvendor would end up ordering less quantity than
the optimum level in a classical newsvendor problem (Dada & Hu, 2008).
Conversely, a newsvendor with more sensitivity towards shortage than left-
over (to be called rich newsvendor hereafter), would find severity of shortage
increasing with demand. As a result, the rich newsvendor will be expected
to order more than the optimal order quantity in classical case (Dana Jr &
Petruzzi, 2001, p.1495). Here we propose a cost setup where the sensitivity
of the newsvendor to leftover and shortage is expressed through two different
dimensionless importance functions.

Deviation from classical newsvendor based optimal order quantity has
been discussed in the literature majorly from two angles. Bounded rational-
ity theory suggests that newsvendor are prone to subjective biases in deciding
optimum order quantity (Su, 2008). Schweitzer & Cachon (2000) and Vipin
& Amit (2019), among others, explain the decision bias of the newsvendor,
through experiments, with high (or low) profit margin of products. On the
other hand, Eeckhoudt et al. (1995); Wang et al. (2009) studied the newsven-
dor problem based on risk-appetite of the newsvendor. It seems no work so
far has considered explicitly the biases due to different sensitivities of the
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newsvendor to shortage and leftover losses.

As argued in Kahneman & Tversky (1979) and Nagarajan & Shechter
(2013), that perceived disutility of the loss is higher than the perceived util-
ity of the equivalent gain, we posit the sensitivity to the types losses as the
perceived disutility, which is higher for leftover (shortage) loss than short-
age (leftover) loss for the poor (rich) newsvendor. Further, the perceived
disutility will increase with amount of leftovers (shortages) for poor (rich)
newsvendor. Hence, we model the disutilities of the newsvendor through two
dimensionless non-linear importance functions in addition to the classical
newsvendor setup.

Although some works report non-linearity in the cost function, asymmet-
ric importance of the two remains unaddressed to the best of knowledge of
the authors. For example, Gerchak & Wang (1997) proposed a power type
shortage cost for liquid asset allocation problem. However, this work does not
consider the leftover cost and the shortage cost has same power of currency
as dimension. Kyparisis & Koulamas (2018) studied the single period price-
setting newsvendor problem with both salvage revenue and shortage cost as
a quadratic function. Rosling (2002) studied periodic review inventory sys-
tem with non-linear shortage cost, where non-linearity appears through the
cumulative distribution function (CDF) of the total demand. Some other
types cost of functions, which has been modeled with non-linearity includes,
among many others, piecewise quadratic holding cost by Parlar & Rem-
pala (1992a,b), exponential holding cost by Pal et al. (2015). Halman et al.
(2012) studied the newsvendor problem with non-decreasing piecewise linear
procurement cost. Inventory system with nonlinear stock dependent demand
and holding cost has been studied more recently by Cárdenas-Barrón et al.
(2018) (see the reference therein).

Another important aspect of the newsvendor problem is the order of di-
mension of cost function. In classical newsvendor problem, the dimension of
the total cost is in currency unit (say $) (Rosling, 2002). However, power
type costs proposed so far in the literature does not maintain uniformity in
the dimensions. In this work, we overcome this problem by constructing unit-
free non-linear importance functions. In turn this approach also ensures that
shortage (leftover) penalty is proportional to the shortage (leftover) quan-
tity (Kyparisis & Koulamas, 2018, p.65). Further, the non-linearity of the
proposed importance functions results in decrease (increase) in cost due to
shortage (leftover) with increasing order quantity and the reverse with in-
creasing realized demand.
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Rest of the paper is arranged as follows. Section 2 details the mathemat-
ical model of the newsvendor problem with non-linear leftover and shortage
importance functions. Numerical examples are given in Section 3. We con-
clude the paper in Section 4 with a brief discussion on our findings.

2 Mathematical Model

In this section, we describe the mathematical model for the newsvendor
problem with non-linear leftover and shortage importance functions. Before
starting into mathematical model, first we list down the nomenclatures in
table 1.

Table 1: Nomenclature List
Symbol Explanation
EC Expected cost of shortages and leftover of products
ce Leftover cost
cs Shortage cost
q Order quantity (Decision variable)

f(x) Probability density function of demand
F (x) Comulative distribution function of demand
m Coefficient of importance for leftover
n Coefficient of importance for shortage

The importance functions I1 and I2 are added in the newsvendor cost
formula to provide the weightage to leftover and shortage costs;

C =

{
ce(q − x)I1, if x ≤ q

cs(x− q)I2, if x > q
(1)

The importance functions I1 and I2 should be so selected that for realized
x ≤ q, it will decrease with demand x but increase with order quantity q and

vice-versa for x > q. Such two functions are L1(q) =
(
q
x

)m
and L2(q) =

(
x
q

)n
(See appendix A.1 for more details).

C =


ce(q − x)

( q
x

)m
, if x ≤ q

cs(x− q)
(
x

q

)n
, if x > q

∀ m,n ≥ 0; integer (2)
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The expected cost function then can be written as,

EC = ce

∫ q

0

(q − x)
( q
x

)m
f(x)dx+ cs

∫ ∞
q

(x− q)
(
x

q

)n
f(x)dx (3)

To find the optimum order quantity q for which the expected cost is min-
imum, we differentiate the expected cost EC with respect to order quantity
q, (Refer appendix A.2 for derivation).

d

dq
(EC) = 0

⇒ ce

∫ q

0

[( q
x

)m
+m

(q − x)

x

( q
x

)m−1]
f(x)dx

−cs
∫ ∞
q

[(
x

q

)n
+ nx

(x− q)
q2

(
x

q

)n−1]
f(x)dx = 0 (4)

2.1 Uniform Distribution

For simplicity, let’s consider demand follows Uniform distribution with
parameter A and B, where 0 < A < B ≤ ∞.

EC = ce

∫ q

A
(q − x)

( q
x

)m( 1

B −A

)
dx + cs

∫ B

q
(x− q)

(
x

q

)n( 1

B −A

)
dx (5)

To find the optimum order quantity q for which the expected cost is min-
imum, we differentiate the expected cost EC with respect to order quantity
q (Refer equation 4),

d

dq
(EC) = 0

ce

∫ q

A

[( q
x

)m
+m

(q − x)

x

( q
x

)m]( 1

B − A

)
dx

−cs
∫ B

q

[(
x

q

)n
+ nx

(x− q)
q2

(
x

q

)n−1](
1

B − A

)
dx = 0 (6)

Since general solutions for the case m = 1 and m = 2, for any n is not
tractable, we solve it in three different cases.
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Proposition 1. The optimum order quantity q∗ for the newsvendor problem
is obtained by solving following equations;

1.
(

ce
B−A

)[ (m+1)(A−m+1qm−q)
m−1 − m(A−m+2qm−1−q)

m−2

]
+

(
cs

B−A

)[ (n−1)(Bn+1q−n−q)
n+1

− n(Bn+2q−n−1−q)
n+2

]
= 0

for m = m - {1,2} and n = n;

2.
(

ce
B−A

)
[2q ln q − 2q lnA− q + A]

+
(

cs
B−A

)[ (n−1)(Bn+1q−n−q)
n+1

− n(Bn+2q−n−1−q)
n+2

]
= 0

for m = 1 and n = n;

3.
(

ce
B−A

)[
2q lnA− 2q ln q − 3q + 3q2

A

]
+

(
cs

B−A

)[ (n−1)(Bn+1q−n−q)
n+1

− n(Bn+2q−n−1−q)
n+2

]
= 0

for m = 2 and n = n;

Proof : See appendix B.1.

Notice that the first order condition requires solution of a polynomial
equation. The following proposition provides the conditions for existence of
the roots.

Proposition 2.

1. For m = 0 and n ≥ 1; unique real positive root of the FOC equation
exist

2. For m ≥ 1 and n = 0; either there are even number of positive real
roots of the FOC equation or the problem is infeasible

3. For m ≥ 3 and n ≥ 1, either one or three positive real roots of the FOC
equation exist.

Proof : Following Descartes sign rule the proof is immediate.

Proposition 3. The expected cost function is unimodal with respect to the
optimum order quantity q∗ for all the three cases.

Proof : See appendix B.2.
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2.2 Gamma Distribution

Suppose demand follows gamma distribution with shape parameter α and
scale parameter θ. The probability density function can be written as,

f(x;α, θ) =
xα−1e−

x
θ

θαΓ(α)
, x > 0; α, θ > 0

The expected cost function is written as,

EC = ce

∫ q

0

(q − x)
( q
x

)m(xα−1e−xθ
θαΓ(α)

)
dx+ cs

∫ ∞
q

(x− q)
(
x

q

)n(
xα−1e−

x
θ

θαΓ(α)

)
dx

=
1

Γ(α)

[
ce
qm

θm
{qγ(α−m, q)− γ(α−m+ 1; q)}

+ cs

(
θ

q

)n
{θΓ(α + n+ 1, q)− qΓ(α + n; q)}

]
=

1

Γ(α)

[
ce
qm

θm
{
γ(α−m, q)(q − α +m) + qα−me−q

}
+ cs

(
θ

q

)n
Γ(α + n, q)

×
{

(θ(α + n)− q) + qα+ne−q
}]

(7)

where, γ(s, q) =

∫ q

0

us−1e−udu is the lower gamma function and Γ(s, q) =∫ ∞
q

us−1e−udu is the upper gamma function.

In the following section, we present numerical instances and corresponding
optimum order quantity for uniform and gamma distributed demand.

3 Numerical Analysis

Let us suppose the demand follows U(50, 100). Further, we set ce = 3,
cs = 3 and vary the importance parameters m and n from 0 to 8. In the
following table we present the optimum order quantity q∗ for each pair of m
and n.
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Table 2: Effect of m and n on EOQ for Uniform distribution
Value of m

V
al

u
e

of
n 0 1 2 3 4 5 6 7 8

0 75.00 71.07 68.10 65.85 64.12 62.75 61.64 60.72 59.96
1 78.28 74.58 71.55 69.13 67.18 65.60 64.29 63.19 62.26
2 80.64 77.20 74.24 71.78 69.73 68.02 66.59 65.37 64.32
3 82.43 79.24 76.41 73.97 71.89 70.11 68.60 67.29 66.16
4 83.85 80.90 78.19 75.81 73.73 71.93 70.37 69.01 67.81
5 85.01 82.25 79.68 77.37 75.32 73.52 71.94 70.54 69.31
6 85.98 83.40 80.96 78.73 76.72 74.93 73.34 71.93 70.67
7 86.81 84.40 82.06 79.91 77.95 76.19 74.60 73.18 71.90
8 87.53 85.24 83.03 80.95 79.05 77.31 75.74 74.32 73.04

Similarly, we conducted numerical analysis for gamma distribution with
shape parameter α and scale parameter θ with value 75 and 1.0 respectively.
The other parameters are similar with uniform distribution.

Table 3: Effect of m and n on EOQ for Gamma distribution
Value of m

V
al

u
e

of
n 0 1 2 3 4 5 6 7 8

0 74.65 73.70 72.80 71.95 71.15 70.35 69.65 68.95 68.25
1 75.60 74.65 73.75 72.90 72.10 71.35 70.60 69.90 69.20
2 76.45 75.50 74.60 73.80 73.00 72.20 71.50 70.80 70.10
3 77.25 76.35 75.45 74.60 73.80 73.05 72.30 71.60 70.90
4 78.05 77.10 76.20 75.40 74.60 73.80 73.10 72.35 71.70
5 78.75 77.85 76.95 76.10 75.30 74.55 73.80 73.10 72.40
6 79.45 78.50 77.65 76.80 76.00 75.25 74.50 73.80 73.10
7 80.10 79.15 78.30 77.45 76.65 75.90 75.15 74.45 73.75
8 80.70 79.80 78.90 78.10 77.30 76.50 75.80 75.10 74.40

Notice, the optimum order quantity is decreasing in m for fixed n and
increasing with n for fixed m. However, for m = n the optimal order quantity
decreases with the coefficient of importance. The intuition behind the result
is as follows. As soon as the importance of leftover loss increases for a given
level of shortage importance, the newsvendor orders less to minimize the
most important loss, i.e. the leftover loss. Similarly, the reverse pattern is
observed in case of increasing shortage importance for a given level of leftover
importance. Form = n, the decreasing values ofQ∗ for increasing importance
could be interpreted as the more conservative ordering pattern or in other
words growing risk-averseness of the newsvendor. The above results are also
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in-line with Pranoto (2005, proposition 2 on p.21), i.e. optimal order quantity
of a poor loss-averse newsvendor is less than the optimal order quantity of
rich loss-averse newsvendor.

4 Conclusion

This paper proposes a generalization of the newsvendor problem with
different degree of severity towards leftovers and shortages. We propose two
novel dimensionless importance functions for different levels of severity of
the leftover and shortage losses and in turn, it explains the decision biases
of newsvendor based on financial wealth (i.e. poor or rich). Further we
have shown that for uniform and gamma demand, existence of the optimal
order quantity is dependent on the degree of importance and provided the
conditions for the same. Numerical examples show that poor newsvendor is
more concerned for leftover than shortages and orders less whereas, a rich
newsvendor is more concerned about the shortages than leftovers resulting
in higher optimum order quantity. We are considering more general class of
demand distribution as extensions of this work.

References

Cárdenas-Barrón, L. E., Shaikh, A. A., Tiwari, S., & Treviño-Garza, G.
(2018). An eoq inventory model with nonlinear stock dependent holding
cost, nonlinear stock dependent demand and trade credit. Computers &
Industrial Engineering .

Dada, M., & Hu, Q. (2008). Financing newsvendor inventory. Operations
Research Letters , 36 (5), 569–573.

Dana Jr, J. D., & Petruzzi, N. C. (2001). Note: The newsvendor model with
endogenous demand. Management Science, 47 (11), 1488–1497.

Eeckhoudt, L., Gollier, C., & Schlesinger, H. (1995). The risk-averse (and
prudent) newsboy. Management science, 41 (5), 786–794.

Fitzsimons, G. J. (2000). Consumer response to stockouts. Journal of
consumer research, 27 (2), 249–266.

Gerchak, Y., & Wang, S. (1997). Liquid asset allocation using “newsven-
dor” models with convex shortage costs. Insurance: Mathematics and
Economics , 20 (1), 17–21.

9



Halman, N., Orlin, J. B., & Simchi-Levi, D. (2012). Approximating the
nonlinear newsvendor and single-item stochastic lot-sizing problems when
data is given by an oracle. Operations Research, 60 (2), 429–446.

Harris, F. W. (1913). How many parts to make at once. Factory: The
Magazine of Management , 10 (2), 135–136.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of
decision under risk. Econometrica, 47 (2), 363–391.

Kyparisis, G. J., & Koulamas, C. (2018). The price-setting newsvendor with
nonlinear salvage revenue and shortage cost. Operations Research Letters ,
46 (1), 64–68.

Nagarajan, M., & Shechter, S. (2013). Prospect theory and the newsvendor
problem. Management Science, 60 (4), 1057–1062.

Pal, B., Sana, S. S., & Chaudhuri, K. (2015). A distribution-free newsvendor
problem with nonlinear holding cost. International Journal of Systems
Science, 46 (7), 1269–1277.

Parlar, M., & Rempala, R. (1992a). A stochastic inventory problem with
piecewise quadratic costs. International Journal of Production Economics ,
26 (1-3), 327–332.

Parlar, M., & Rempala, R. (1992b). Stochastic inventory problem with
piecewise quadratic holding cost function containing a cost-free interval.
Journal of optimization theory and applications , 75 (1), 133–153.

Pranoto, Y. (2005). Effects of human decision bias in supply chain perfor-
mance (Unpublished doctoral dissertation). Georgia Institute of Technol-
ogy.

Rosling, K. (2002). Inventory cost rate functions with nonlinear shortage
costs. Operations Research, 50 (6), 1007–1017.

Schweitzer, M. E., & Cachon, G. P. (2000). Decision bias in the newsven-
dor problem with a known demand distribution: Experimental evidence.
Management Science, 46 (3), 404–420.

Su, X. (2008). Bounded rationality in newsvendor models. Manufacturing
& Service Operations Management , 10 (4), 566–589.

Vipin, B., & Amit, R. (2019). Describing decision bias in the newsvendor
problem: A prospect theory model. Omega, 82 , 132–141.

10



Wang, C. X., Webster, S., & Suresh, N. C. (2009). Would a risk-averse
newsvendor order less at a higher selling price? European Journal of
Operational Research, 196 (2), 544–553.

Appendix A

A.1

For x ≤ q, importance function (q − x)
(
q
x

)m
is increase with q and de-

crease with x. We get,

d

dq

[
(q − x)

( q
x

)m]
=
( q
x

)m
+ (q − x)m

( q
x

)m−1(1

x

)
=
( q
x

)m
+m

(
q − x
x

)( q
x

)m−1
> 0, ∀x&q ≥ 0 (A.1)

d

dx

[
(q − x)

( q
x

)m]
= −

( q
x

)m
+ (q − x)m

( q
x

)m−1(−1

x2

)
= −

( q
x

)m
−m

(
q − x
x2

)( q
x

)m−1
≤ 0, ∀x&q ≥ 0 (A.2)

For x > q, importance function (x− q)
(
x
q

)m
is increase with x and

decrease with q. We get,

d

dq

[
(x− q)

(
x

q

)m]
= −

(
x

q

)n
+ (x− q)n

(
x

q

)n−1(−x
q2

)
= −

(
x

q

)n
− nx

(
x− q
q2

)(
x

q

)n−1
≤ 0, ∀x&q ≥ 0 (A.3)
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d

dx

[
(x− q)

(
x

q

)m]
=

(
x

q

)n
+ (x− q)n

(
x

q

)n−1(
1

q

)
=

(
x

q

)n
+ n

(
x− q
q

)(
x

q

)n−1
> 0, ∀x&q ≥ 0 (A.4)

A.2

Differentiate Expected cost function EC with order quantity q to find the
optimum order quantity,

d

dq
(EC) = 0

d

dq

(
ce

∫ q

0

(q − x)
( q
x

)m
f(x)dx+ cs

∫ ∞
q

(x− q)
(
x

q

)n
f(x)dx

)
= 0

ce

∫ q

0

∂

∂q

[
(q − x)

( q
x

)m
f(x)

]
dx+ cs

∫ ∞
q

∂

∂q

[
(x− q)

(
x

q

)n
f(x)

]
dx = 0

ce

∫ q

0

[( q
x

)m
+m

(q − x)

x

( q
x

)m−1]
f(x)dx− cs

∫ ∞
q

[(
x

q

)n
+ nx

(q − x)

q2

(
x

q

)n−1]
f(x)dx = 0

(A.5)

Appendix B

B.1

For general m = m,n = n;
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ce

∫ q

A

[( q
x

)m
+m

(q − x)

x

( q
x

)m−1]( 1

B − A

)
dx

− cs
∫ B

q

[(
x

q

)n
+ nx

(q − x)

q2

(
x

q

)n−1](
1

B − A

)
dx = 0(

ce
B − A

)[
(m+ 1) (A−m+1qm − q)

m− 1
− m (A−m+2qm−1 − q)

m− 2

]
+

(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]
= 0

(B.1)

For general m = 1, n = n;

d

dq

[
ce

∫ q

A

(q − x)
( q
x

)1
f(x)

(
1

B − A

)]
− cs

∫ B

q

[(
x

q

)n
+ nx

(q − x)

q2

(
x

q

)n−1](
1

B − A

)
dx = 0(

ce
B − A

)
[2q ln q − 2q lnA− q + A]

+

(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]
= 0

(B.2)

For general m = 2, n = n;

d

dq

[
ce

∫ q

A

(q − x)
( q
x

)2
f(x)

(
1

B − A

)]
− cs

∫ B

q

[(
x

q

)n
+ nx

(q − x)

q2

(
x

q

)n−1](
1

B − A

)
dx = 0(

ce
B − A

)[
2q lnA− 2q ln q − 3q +

3q2

A

]
+

(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]
= 0

(B.3)
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B.2

In present appendix we proved the unimodality of the optimum order quan-
tity, q∗ for all the three cases of uniform distribution,

For general m = m,n = n;

d2

dq2
(EC) =

d

dq

(
d

dq
(EC)

)
=

d

dq

[(
ce

B − A

)[
(m+ 1) (A−m+1qm − q)

m− 1
− m (A−m+2qm−1 − q)

m− 2

]]
+

d

dq

[(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]]
=

(
ce

B − A

)[
(m+ 1) ((m)A−m+1qm−1 − 1)

m− 1
− m ((m− 1)A−m+2qm−2 − 1)

m− 2

]
+

(
cs

B − A

)[
(n− 1) ((−n)Bn+1q−n−1 − 1)

n+ 1
− n ((−n− 1)Bn+2q−n−2 − 1)

n+ 2

]
=

(
ce

B − A

)[
2

(m− 1)(m− 2)
+m

( q
A

)m−2(m+ 1

m− 1

( q
A

)
− m− 1

m− 2

)]
+

(
cs

B − A

)[
2

(n+ 1)(n+ 2)
+ n

(
B

q

)n+1(
n+ 1

n+ 2

(
B

q

)
− n− 1

n+ 1

)]
≥ 0, ∀ m = m− {1, 2} and n = n (B.4)

For general m = 1, n = n;
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d2

dq2
(EC) =

d

dq

(
d

dq
(EC)

)
=

d

dq

[(
ce

B − A

)
[2q ln q − 2q lnA− q + A]

]
+

d

dq

[(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]]
=

(
ce

B − A

)
[2 ln q − 2 lnA+ 1]

+

(
cs

B − A

)[
(n− 1) ((−n)Bn+1q−n−1 − 1)

n+ 1
− n ((−n− 1)Bn+2q−n−2 − 1)

n+ 2

]
=

(
ce

B − A

)
[2 ln q − 2 lnA+ 1]

+

(
cs

B − A

)[
2

(n+ 1)(n+ 2)
+ n

(
B

q

)n+1(
n+ 1

n+ 2

(
B

q

)
− n− 1

n+ 1

)]
≥ 0, ∀ m = 1 and n = n (B.5)

For general m = 2, n = n;

d2

dq2
(EC) =

d

dq

(
d

dq
(EC)

)
=

d

dq

[(
ce

B − A

)[
2q lnA− 2q ln q − 3q +

3q2

A

]]
+

d

dq

[(
cs

B − A

)[
(n− 1) (Bn+1q−n − q)

n+ 1
− n (Bn+2q−n−1 − q)

n+ 2

]]
=

(
ce

B − A

)[
2 lnA− 2 ln q − 5 +

6q

A

]
+

(
cs

B − A

)[
(n− 1) ((−n)Bn+1q−n−1 − 1)

n+ 1
− n ((−n− 1)Bn+2q−n−2 − 1)

n+ 2

]
=

(
ce

B − A

)[
2 lnA− 2 ln q − 5 +

6q

A

]
+

(
cs

B − A

)[
2

(n+ 1)(n+ 2)
+ n

(
B

q

)n+1(
n+ 1

n+ 2

(
B

q

)
− n− 1

n+ 1

)]
≥ 0, ∀ m = 2 and n = n (B.6)
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