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Abstract. In the literature, the Linnik distribution together with the Mittag-Leffler

one are presented as physically relevant examples of geometric stable distributions.

The geometric stable distributions are especially useful in modeling leptokurtic data

with heavy-tailed behavior. They have found many interesting applications, including

physical phenomenon and finance. In this paper, we define the Linnik Lévy processes

(LLP) through the subordination of the stable Lévy motion by the gamma process.

We discuss main properties of LLP like probability density function and corresponding

Lévy measure. We consider also the governing fractional-type Fokker-Planck equation.

Further, a generalization of the introduced process is also discussed.

Keywords: Linnik distribution, subordinated stochastic processes, Lévy density.
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1. Introduction

In the literature the Linnik distribution together with the Mittag-Leffler one are

presented as the most known examples of geometric stable distributions. The geometric

stable distributions belong to the family of leptokurtic probability distributions. One

can see the link between stable (called also Lévy stable or α−stable) distributions and

the geometric ones. One of the most important property of stable distribution is as

follows: if X1, X2, . . . , Xn are independent, identically stable distributed, then its sum

Y = an(X1 + X2 + . . . + Xn) + bn has the same distribution as Xis for some constants

an and bn. For the geometric stable distribution we have the similar property: if

X1, X2, . . . , Xn are independent, identically geometric stable distributed and Np is a

random variable independent on Xis having geometric distribution with parameter p,

then the sum Y = aNp(X1+X2+. . .+XNp)+bNp approaches the distribution of Xis when

p tends to zero, [1]. The geometric stable distributions are considered as an alternative

for the stable ones, which have the features making them suitable for many real data.

One of the classical application of stable-based processes are financial markets. In

most of the cases the financial data exhibit so-called heavy-tailed behavior therefore the

stable-based processes seem to be more appropriate than the Gaussian-based systems.

As it was shown in [2] the geometric stable distribution was selected as the best to the

Yen exchange rate description. Since the geometric stable distributions arise as the sum

of random variables, they naturally arise in many real problems [3,4] and are especially

important in modeling heavy-tailed data, when the considered process can be analyzed

as a sum of independent observations when their number is also random. This effect is

often observable in financial phenomenon [1].

The Linnik distribution (called also a Laplace distribution) is a special case of the

geometric distributions. It was introduced by Ju.V. Linnik in [5] and is widely studied

by many authors, see e.g [6–8]. The distribution function of Linnik random variable is

not given in the closed form and hence it is generally defined in term of characteristic

function (c.f.). If X is the Linnik-distributed random variable then its c.f. is defined by

φX(u) = E(eiuX) =
1

(1 + |u|α)
, 0 < α < 2. (1)

The presented above c.f. can be viewed as a generalization of the well-known Laplace

(double exponential) c.f. φ(u) = 1/(1 + u2) for the case α = 2, see, e.g. [9]. Since

Linnik distributions are infinitely divisible [10] one can define a continuous time Lévy

process for these distributions. In the literature Linnik Lévy processes (LLPs) are

also called geometric stable processes (GSP), see e.g. [11, 12]. Per our knowledge, the

explicit expressions for the probability density function (PDF), Lévy measure, governed

fractional Fokker-Planck equation as well as the tail behavior for the LLP are not

available in the literature. Our paper fills that gap, generalizes and complements the

results available on Linnik distribution and processes in different directions.

On one hand, the LLP is a process of stationary independent increments having Linnik

distribution. On the other hand the LLP can be represented as the subordination
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of the stable Lévy motion by the gamma process, called gamma subordinator. In

general, the idea of subordination was introduced in 1949 by Bohner [13] and is based

by changing the time of a stochastic process by some other process which is generally a

non-decreasing Lévy process, called subordinator. The theory of subordinated processes

is explored in details in [14]. The subordinated processes were studied in many areas of

interest, for example in finance [15–20], physics [21–24], ecology [25], hydrology [26] and

biology [27]. In the literature one can find different examples of subordinated processes.

One of the classical one is the variance gamma process known also as the Laplace

motion [28,29]. The variance gamma process was applied in different fields however the

classical applications are financial data. It arises as the Brownian motion with drift

subordinated by the gamma process. Thus the LLP can be considered as the extension

of the popular subordinated process and thus can find even more applications than the

classical process. In this paper we demonstrate also how to generalize the LLP to the

more general Lévy processes which can be used to description of heavy-tailed behavior.

The rest of the paper is organized as follows: in section 2 we introduce the LLP process

as the subordinated stable Lévy motion delayed by gamma process. In the following

subsections we present the main properties of the introduced process, like probability

density function and Lévy measure, governing fractional-type Fokker-Planck equation,

tail behavior and fractional moments. In section 3 we generalize the LLP process through

replacement of the gamma process by general Lévy subordinator. We present also main

properties of the generalized process. Last section concludes the paper.

2. Linnik Lévy Process (LLP)

Before we define the Linnik Lévy process we remind the definition and main properties

of the Stable Lévy motion and gamma Lévy process, two processes used to the LLP

construction.

2.1. Stable Lévy motion

A stable distribution is also called an α-stable or a Lévy stable. Probability density

function (PDF) of stable distribution does not possess closed form except for three

cases (Gaussian, Cauchy and Lévy). Therefore it is more convenient to express stable

PDF in term of its characteristic function (or Fourier transform). A random variable

X is said to follow stable distribution with parameters α, β̃, µ and σ if its characteristic

function φ(u) satisfies [30]

log φ(u) = logE
(
eiXu

)
=

{
−σα|u|α[1− iβ̃sign(u) tan(uα

2
)] + iµu, if α 6= 1

−σ|u|[1 + iβ̃sign(u) 2
π

ln |u|] + iµu, if α = 1,
(1)

where α ∈ (0, 2] is the stability index, β̃ ∈ [−1, 1] is the skewness, µ ∈ R is the location

(or shift) and σ > 0 is the scale. For α = 2 the stable random variable is Gaussian. In

this paper we consider the special symmetric case, namely β̃ = µ = 0.
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A stable Lévy motion S(t), t ≥ 0 has stationary independent increments with S(t)−S(s)

(t > s) having stable distribution with parameters α, σ = (|t − s|)1/α and β̃ = µ = 0.

Further, the characteristic function of S(t) [30] is given by

E(eiuS(t)) = e−t|u|
α

, α ∈ (0, 2], t > 0, u ∈ R. (2)

For large x right tail of the stable Lévy motion for 0 < α < 2 behaves [30]

P(S(t) > x) ∼ Cαtx
−α, (3)

where

Cα =

{
(1−α)

2Γ(2−α) cos(πα
2

)
, if α 6= 1

1
π
, if α = 1.

(4)

It is worth to highlight some crucial properties of the process S(t). One of them is

self-similarity property, which means all finite-dimensional distributions of {S(at), t > 0}
agree with those of {a1/αS(t), t > 0}. Moreover, distribution of the S(t) is self-

decomposable, which means that its Lévy measure has a certain form

πS(dx) =
k(x)

|x|

with the function k(x) which is decreasing on (0,∞) and increasing on (−∞, 0). More

details one can find in [31]. Using self-similarity property of stable Lévy motion and [32],

p. 583, one can show the marginal PDF of the process S(t) in series form is given by

f(x, t) =


1

π

∞∑
k=1

(−1)k+1 Γ(kα + 1)

k!

tk

xkα+1
sin

(
παk

2

)
, if x ∈ R, 0 < α < 1

1

π

∞∑
k=1

(−1)k+1 Γ(k/α + 1)

k!
t−k/αxk−1 sin

(
πk

2

)
, if x ∈ R, 1 < α < 2.

(5)

For α = 2, the stable Lévy motion reduces to standard Brownian motion while for α = 1

it is known as Cauchy process. Thus we have

f(x, t) =

{
1√
2πt
e−x

2/2t, x ∈ R, α = 2
t
π

1
x2+t2

, x ∈ R, α = 1.
(6)

2.2. Gamma process

The gamma Lévy process G(t), t ≥ 0 (called simple gamma process) has independent

increments of gamma distribution, i.e. G(t) − G(s) ∼ Gamma(λ, β(t − s)), where a

random variable Y is said to have Gamma(λ, β) distribution if its PDF has the form

fY (y) =
λβ

Γ(β)
yβ−1e−λy, y > 0.
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Further, the Laplace transform (LT) of G(t) is given by

E
(
e−uG(t)

)
=

(
λ

λ+ u

)βt
. (7)

For q > 0, the q-th order moment for G(t) is

E(G(t)q) =
Γ(βt+ q)

Γ(βt)
λ−q. (8)

The Lévy density for gamma process is, [31]

πG(x) =
β

x
e−λx. (9)

2.3. Main properties of LLP

In this subsection first we define Linnik Lévy process by subordinating a stable Lévy

motion with the gamma process. Both processes and their properties were introduced

above. Note that, the representation of LLP through the subordination scenario is

very helpful in deriving the properties of the LLP (in general) and Linnik distribution

(in particular). This way we generalize and complements the results obtained on

Linnik distribution in different directions. After presenting the definition we give main

properties of introduced process.

The LLP denoted by X(t) is defined by

X(t) := S(G(t)), t ≥ 0, (10)

where S(t) and G(t) are independent stable and gamma Lévy processes, respectively.

Using a standard conditioning argument with (2) and (7), it follows

E(eiuX(t)) = E
(
E
(
eiuS(G(t))|G(t)

))
= E

(
e−G(t)|u|α) =

(
λ

λ+ |u|α

)βt
. (11)

For λ = β = t = 1, the characteristic function of X(t) given in (11) reduces to the

characteristic function of Linnik distribution given in (1).

Probability density function and Lévy measure of LLP

Let us denote f(x, t) as the marginal PDF of stable Lévy motion S(t). For β = 1, LLP

is a stochastically self-similar process with self-similarity parameter 1/α with respect

to the family of negative binomial Lévy processes. This follows using the fact that the

LLP is obtained by subordinating the stable Lévy motion, which is self-similar with

index 1/α, with a gamma process which is stochastically self-similar with respect to the

family of negative binomial Lévy processes (see Proposition 4.2 in [33]). The PDF of

process X(t) can be represented by

h(x, t) =

∫ ∞
0

f(x, y)g(y, t)dy, x ∈ R, t ≥ 0.
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Moreover, the Lévy measure πX for X(t) can be written as [34]

πX(x) =

∫ ∞
0

f(x, y)πG(y)dy. (12)

Using Gaussian PDF (i.e. stable with α = 2), the Lévy measure for X(t) for α = 2 can

be calculated explicitly as follows

πX(x) =

∫ ∞
0

f(x, y)πG(y)dy =

∫ ∞
0

1√
2πy

e−
x2

2y
β

y
e−λydy

=
β√
2π

∫ ∞
0

y−3/2e−
1
2

(x
2

y
+2λy)dy (substitute y = x√

2λ
z)

=
β√
2π

(
x√
2λ

)−1/2 ∫ ∞
0

z−3/2e−
1
2
x
√

2λ( 1
z

+z)dz

=
β√
2π

(
x√
2λ

)−1/2

K−1/2(x
√

2λ) =
β

2x
e−x
√

2λ,

where Kν(ω) is the modified Bessel function of third kind with index ν, defined by [35]

Kν(ω) =
1

2

∫ ∞
0

xν−1e−
1
2
ω(x+x−1)dx, ω > 0. (13)

Further,

K1/2(ω) = K−1/2(ω) =

√
π

2ω
e−ω.

For 0 < α < 1, using (5) and (12), it follows

πX(x) =
β

πx

∞∑
k=1

(−1)k+1 Γ(1 + kα)

kxkαλk
sin

(
παk

2

)
. (14)

For α = 1,

πX(x) =
β

π

∫ ∞
0

e−λy

x2 + y2
dy ∼ β

πλx2
, as x→∞.

For 1 < α < 2, the Lévy density seems difficult to write in a closed form and can be

represented in the integral form given in (12). However, an asymptotic form for πX(x)

for α ∈ (1, 2) can be found by using (3), (9) and (12). It is given by

πX(x) ∼ β

λπ
Γ(1 + α) sin(πα/2)

1

x1+α
, as x→∞. (15)

For asymptotic behavior of Lévy density as x→ 0+, see [11].

Proposition 2.1. For α ∈ (0, 2) the PDF h(x, t) of X(t) can be represented as

h(x, t) =
λβt

π
Re

∫ ∞
0

ie−sx

(λ+ sαeiπα/2)βt
ds, x > 0. (16)
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Proof. By Fourier inversion formula, we have

h(x, t) =
λβt

2π

∫ ∞
−∞

e−iux

(λ+ |u|α)βt
du =

λβt

π

∫ ∞
0

cosux

(λ+ uα)βt
du =

λβt

π
Re

∫ ∞
0

eiux

(λ+ uα)βt
du.

(17)

Now let us consider the complex region SR = {u = r + is : |u| < R, r > 0, s > 0}. SR
is the portion of the disc of radius R in the positive quadrant. The function (λ+ uα)βt

is analytic in SR. By Cauchy integral formula, we have∮
∂SR

eiux

(λ+ uα)βt
du = 0.

R r

s

O

CR

Figure 1. Contour CR.

Let CR = {u = r + is : |u| = R, r ≥ 0, s ≥ 0}, then we have∫ R

0

eirx

(λ+ rα)βt
dr +

∫
CR

eiux

(λ+ uα)βt
du−

∫ R

0

e−sx

(λ+ sαeiπα/2)βt
ids = 0.

The integral along CR tends to 0 as R→∞ and hence∫ ∞
0

eirx

(λ+ rα)βt
dr =

∫ ∞
0

e−sx

(λ+ sαeiπα/2)βt
ids.

Using (17) the result follows.

Remark 2.1. For λ = β = t = 1 the PDF h(x, t) takes the form

h(x, 1) =
1

π
Re

∫ ∞
0

ie−sx

(1 + sαeiπα/2)
ds =

1

π
Re

∫ ∞
0

ie−sx(1 + sαe−iπα/2)

|1 + sαeiπα/2|2
ds

=
sin(πα/2)

π

∫ ∞
0

e−sxsα

|1 + sαeiπα/2|2
ds,

which is the Linnik PDF, see e.g. [36].

Remark 2.2. For α = 2, the PDF h(x, t) represents symmetric variance gamma PDF

and is given by

h(x, t) =
λβt√

2πΓ(βt)

(
x√
2λ

)βt−1/2

Kβt+1/2(x
√

2λ), x ∈ R. (18)
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Next we discuss the asymptotic behavior of the marginal PDF of X(t). It is required

to use the following theorem given in [37].

Theorem 2.1. [37] If the characteristic function φ(u) for a random variable X is

absolutely integrable and can be decomposed into the form

φ(u) = φ1(u) + φ2(u) + φ3(u),

where

φ1(u) = eiηu
M−1∑
m=0

Am(iu)m, φ2(u) = eiηu|u|p
J∑
j=0

K(j)∑
k=0

L(j)∑
l=0

Bjkl|u|rj(isgn (u))k(ln |u|)l, p ≥M, r > 0,

and φ
(j)
3 (u) is absolutely integrable for j = 0, 1, 2, · · · , N and N is the smallest integer

≥ p + jr + 1, also φ
(j)
3 (u)→ 0 as u→ ±∞ for j = 0, 1, 2, · · · , N , then the PDF fX(s)

has the following asymptotic expansion as |x| → ∞

fX(x) ∼ 1

π|x− η|p+1

J∑
j=0

K(j)∑
k=0

L(j)∑
l=0

Bjkl
∂l

∂zl
Γ(z + p+ 1)|y|−z (19)

·1
2

{
ike−

1
2
iπsgn (y)(z+p+1) + (−1)ke

1
2
iπsgn (y)(z+p+1)

}]
z=jr,y=x−η

+ O(|x|−N).

(20)

Proposition 2.2. The PDF h(x, t) of LLP X(t) has following asymptotic expansion as

|x| → ∞

h(x, t) =
1

π|x|α+1

J∑
j=0

(−1)j+1

(
βt+ j

j + 1

)
Γ(jα + α + 1)

λj+1
|x|−jα cos

(π
2

sgn (x)(jα + α + 1)
)

+O(|x|−N),

(21)

where N is smallest integer ≥ (J + 1)α + 1.

Proof. Note that the characteristic function of LLP X(t) can be decomposed as

φX(u; t) =

(
1 +
|u|α

λ

)−βt
=
∞∑
j=0

(−1)j
(
βt+ j − 1

j

)(
|u|α

λ

)j
, |u| < λ1/α

= 1 +
J∑
j=1

(−1)j
(
βt+ j − 1

j

)(
|u|α

λ

)j
+

∞∑
j=J+1

(−1)j
(
βt+ j − 1

j

)(
|u|α

λ

)j

= 1︸︷︷︸
φ1(u)

+ |u|α
J∑
j=0

(−1)j+1

(
βt+ j

j + 1

)
|u|αj

λj+1︸ ︷︷ ︸
φ2(u)

+
∞∑

j=J+1

(−1)j
(
βt+ j − 1

j

)(
|u|α

λ

)j
︸ ︷︷ ︸

φ3(u)

.
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Using, Theorem 2.1, it follows that η = 0, p = α, r = α,K(j) = 0, L(j) = 0. Thus as

|x| → ∞ we obtain

h(x, t) =
1

π|x|α+1

J∑
j=0

(−1)j+1

(
βt+ j

j + 1

)
Γ(jα + α + 1)

λj+1
|x|−jα

· 1

2

[
e−i

π
2

sgn (x)(jα+α+1) + e−i
π
2

sgn (x)(jα+α+1)
]

+ O(|x|−N),

which concludes the proof.

Governing fractional-type Fokker-Planck equation

In this part we discuss shortly the governing fractional-type Fokker-Planck equation

(FFPE) for the one dimensional density h(x, t) of the process X(t). Recall the definition

from [38] of the so-called shift operator e−p∂t , p ∈ R which is given by

e−p∂tf(t) =
∞∑
j=0

(−p∂t)j

j!
f(t) = f(t− p), p ∈ R.

We denote operator (−∆)a, a ∈ (0, 1) as the fractional Laplacian, which gives the

standard Laplacian when a = 1 [39]. The fractional Laplacian of order a ((−∆)a )

can be defined on functions g : R→ R as a Fourier multiplier given by the formula

F((−∆)ag))(u) = |u|2aF(g)(u).

Proposition 2.3. The one dimensional PDF of LLP satisfies the following FFPE

λ(1− e−
1
β
∂t)h(x, t) = −(∆x)

α/2h(x, t), h(x, 0) = δ0(x). (22)

Proof. Taking Fourier transform with respect to the space variable denoted by Fx in

left hand side of the equation (22) we obtain

Fx
(
λ(1− e−

1
β
∂t)h(x, t)

)
= λ(1− e−

1
β
∂t)

(
λ

λ+ |u|α

)βt
= λ

(
λ

λ+ |u|α

)βt
− λ

(
λ

λ+ |u|α

)βt−1

= −|u|αFx(h(x, t)).

By inverting the Fourier transform one can obtain the desired result.

Tail behavior of LLP

Proposition 2.4. The tail of the distribution for X(t) has following asymptotic behavior

P(X(t) > x) ∼ βt

λπ
Γ(α) sin

(πα
2

)
x−α, as x→∞. (23)

Proof. Using (21) one can obtain

h(x, t) =
1

πxα+1

J∑
j=0

(−1)j+1

(
βt+ j

j + 1

)
Γ(jα + α + 1)

λj+1
x−jα sin

(π
2
α(j + 1)

)
+ O(x−N)

∼ βt

λπ
Γ(α + 1) sin

(πα
2

)
x−α−1.

The result follows by using L’Hôpital rule.
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Remark 2.3. One can also derive the tail behavior by using a conditioning argument

and the identity Γ(α)Γ(1− α) = π
sin(πα)

with (3), such as (see [40])

P(X(t) > x) = E(P(S(G(t)) > x|G(t))) ∼ Cαx
−αE(G(t)) =

(1− α)

2Γ(2− α) cos(πα
2

)

βt

λ
x−α

=
βt

λ

1

2Γ(1− α) cos(πα
2

)
x−α =

βt

λπ
Γ(α)

sin(πα)

2 cos(πα
2

)
x−α =

βt

λπ
Γ(α) sin

(πα
2

)
x−α.

Remark 2.4. Using the fact that Kν(ω) ∼
√

π
2
e−ωω−1/2 (see [41]) as ω → ∞, taking

under consideration (18) for α = 2 we have

P(X(t) > x) ∼ 1

2

(
λ

2

)βt/2
e−x
√

2λxβt−1, as x→∞. (24)

Fractional moments of LLP

In this part we discuss the fractional moments for LLP. As it can be expected, the

fractional moments of LLP are strictly related to fractional moments of stable and

gamma distributions. The moments of stable distribution are discussed in [42].

Proposition 2.5. For 0 < q < α < 2, the fractional moments of LLP have following

form

EXq(t) = cq,α
Γ(βt+ q/α)

Γ(βt)
λ−q/α,

where

cq,α =
2qΓ(1+q

2
)Γ(1− q

α
)

Γ(1− q
2
)Γ(1

2
)

. (25)

Proof. Using self-decomposability of symmetric stable distributions, it follows

ESq(t) =
2qΓ(1+q

2
)Γ(1− q

α
)

Γ(1− q
2
)Γ(1

2
)

tq/α = cq,αt
q/α.

Using above expression and (8) with

EXq(t) = ESq(G(t)) = EGq/α(t)ESq(1),

the result follows.

Remark 2.5. Using Stirling’s formula x−rΓ(x+r)/Γ(x) ∼ 1 as x→∞, one can obtain

the asymptotic behavior of fractional moments for LLP, such that

EXq(t) ∼ cq,αλ
−q/α(βt)q, as t→∞. (26)
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3. Generalization of LLP

Linnik Lévy process can be generalized if we apply the general Lévy subordinator

(hereafter referred to as the subordinator) in place of a gamma subordinator in (10).

We remind, the subordinator is strictly increasing Lévy process of positive values [31].

The general subordinator Dg(t), t ≥ 0 has the following LT (see [31, Section 1.3.2], [44])

E[e−sDg(t)] = e−tg(s), s > 0, (27)

where

g(s) = bs+

∫ ∞
0

(1− e−sx)ν(dx), b ≥ 0, s > 0, (28)

is the Bernstein function. The g(s) function is called the Laplace exponent of the

subordinator. Here b is the drift coefficient and ν is a non-negative Lévy measure on

positive half-line such that ∫ ∞
0

(x ∧ 1)ν(dx) <∞.

The assumption ν(0,∞) = ∞ guarantees that the sample paths of Dg(t) are almost

surely (a.s.) strictly increasing.

The Generalized Linnik Lévy process (GLLP) we introduce by subordinating a

symmetric stable Lévy motion with the general Lévy subordinator. Thus, the GLLP

Xg(t) is defined as

Xg(t) := S(Dg(t)), (29)

where S(t) and Dg(t) are independent stable Lévy motion and Lévy subordinator with

LT given in (27), respectively. Using a standard conditioning argument with (2) and

(27), it follows

E(eiuXg(t)) = E
[
E
(
eiuS(Dg(t))|Dg(t)

)]
= E

[
e−|u|

αDg(t)
]

= exp (−tg(|u|α)) . (30)

Below we present examples of the Lévy subordinator {Dg(t), t ≥ 0}.

Example 3.1 (Gamma subordinator). Let {G(t), t ≥ 0} be the gamma subordinator

described in the previous sections. In this case the corresponding Laplace exponent is

given by

g(u) = β log(1 + u/λ), u ≥ 0. (31)

Example 3.2 (α̃-stable subordinator). Let {Dα̃(t), t ≥ 0}, 0 < α̃ < 1 be the α̃-stable

subordinator with LT

E[e−uDα̃(t)] = e−tu
α̃

, u ≥ 0.

The corresponding Laplace exponnet is given by

g(u) = uα̃, u ≥ 0. (32)

The stable Lévy motion time-changed by an independent α̃-stable subordinator is defined

as

{X(1)(t)} = {S(Dα̃(t)), t ≥ 0}.
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Example 3.3 (Tempered α̃-stable subordinator). Let {Dµ̃
α̃(t), t ≥ 0}, µ̃ > 0, 0 < α̃ < 1

be the tempered α̃-stable subordinator with LT

E[e−uD
µ
α̃(t)] = e−t((µ̃+u)α̃−µ̃α̃).

The corresponding Laplace exponent is given by

g(u) = (µ̃+ u)α̃ − µ̃α̃, u ≥ 0. (33)

We consider the stable Lévy motion time-changed by an independent tempered α̃-stable

subordinator, defined as

{X(2)(t)} = {S(Dµ̃
α̃(t)), t ≥ 0}.

Example 3.4 (Inverse Gaussian subordinator). Let {IG(t), t ≥ 0} be the inverse

Gaussian subordinator with LT (see [31, Example 1.3.21])

E[e−uIG(t)] = e
−t

(
δ(
√

2u+γ2−γ)
)
, δ, γ > 0.

The corresponding Laplace exponent is given by

g(u) =
(
δ(
√

2u+ γ2 − γ)
)
, u ≥ 0. (34)

Consider the stable Lévy motion time-changed by an independent inverse Gaussian

subordinator, defined as

{X(3)(t)} = {S(IG(t)), t ≥ 0}.

In the next part of the paper we present main properties of the GLLP defined in (29).

Proposition 3.1. For α ∈ (0, 2) the PDF hg(x, t) of Xg(t) can be represented as

hg(x, t) =
1

π
Re

∫ ∞
0

ie−sxe−tg(s
αeiπα/2)ds, x > 0, (35)

provided the function e−tg(u
α) is analytic in SR given in Fig. 1.

Proof. By Fourier inversion formula we have

hg(x, t) =
1

2π

∫ ∞
−∞

e−iuxe−tg(|u|
α)du =

1

π

∫ ∞
0

cos(ux)e−tg(u
α)du

=
1

π
Re

∫ ∞
0

eiuxe−tg(u
α)du. (36)

Consider the complex region SR = {u = r + is : |u| < R, r > 0, s > 0} (see Fig. 1). If

the function e−tg(u
α) is analytic in SR. By Cauchy integral formula, we have∮

∂SR

eiuxe−tg(u
α)du = 0.
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Let CR = {u = r + is : |u| = R, r ≥ 0, s ≥ 0} (see Figure 1), then we have∫ R

0

eirxe−tg(u
α)dr +

∫
CR

eiuxe−tg(u
α)du−

∫ R

0

e−sxe−tg(s
αeiπα/2)ids = 0.

The integral along CR tends to 0 as R→∞ and hence∫ R

0

eirxe−tg(u
α)dr =

∫ R

0

e−sxe−tg(s
αeiπα/2)ids.

Using (36) the result follows.

Proposition 3.2. The one dimensional PDF of GLLP satisfies the following FFPE

∂

∂t
hg(x, t) = −ψ(i∂x)hg(x, t), hg(x, 0) = δ0(x), (37)

where ψ(s) = g(|s|α).

Proof. Taking Fourier transform with respect to the space variable denoted by Fx in

left hand side of the equation (37),

Fx
(
∂

∂t
hg(x, t)

)
=

∂

∂t
e−tg(|u|

α)

= −g(|u|α)Fx (hg(x, t)) .

By inverting the Fourier transform one can obtain the desired result.

Remark 3.1. We can derive the tail behavior of the GLLP by using a conditioning

argument and the identity Γ(α)Γ(1− α) = π
sin(πα)

with (3), such as (see [40])

P(Xg(t) > x) = E(P(S(Dg(t)) > x|Dg(t))) ∼ Cαx
−αE(Dg(t))

=
(1− α)

2Γ(2− α) cos(πα
2

)
E(Dg(t))x

−α

= E(Dg(t))
1

2Γ(1− α) cos(πα
2

)
x−α

=
E(Dg(t))

π
Γ(α)

sin(πα)

2 cos(πα
2

)
x−α

=
E(Dg(t))

π
Γ(α) sin

(πα
2

)
x−α.

Proposition 3.3. For 0 < q < α < 2, the fractional moments for GLLP have following

form

EXq(t) = cq,αE[Dq/α
g (t)],

where cq,α is gievn in (25).
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Proof. For symmetric stable process one has

ESq(t) = cq,αt
q/α,

with cq,α given in (25). Using self-similarity of the stable distribution and the above

expression, we obtain

EXq(t) = ESq(Dg(t)) = E[Dq/α
g (t)]ESq(1) = cq,αE[Dq/α

g (t)].

Law of iterated logarithm

Definition 3.1. We call a function l : (0,∞) → (0,∞) regularly varying at 0+ with

index ν ∈ R (see [45]) if

lim
x→0+

l(λx)

l(x)
= λν , for λ > 0.

We first reproduce the following law of iterated logarithm (LIL) for the subordinator

from [45], Chapter III, Theorem 14.

Lemma 3.1. Let Dg(t) be a subordinator with E[e−sDg(t)] = e−tg(s), where g(s) is

regularly varying at 0+ with index ν ∈ (0, 1). Let g−1 be the inverse function of g

and

k(t) =
log log t

g−1(t−1 log log t)
, (e < t).

Then

lim inf
t→∞

Dg(t)

k(t)
= ν(1− ν)(1−ν)/ν , a.s. (38)

We next prove the Law of iterated logarithm for the GLLP.

Theorem 3.1 (Law of iterated logarithm). Let the Laplace exponent g(s) of the

subordinator {Dg(t)}t≥0 be regularly varying at 0+ with index ν ∈ (0, 1). Then, for

0 < α < 2 we have

lim inf
t→∞

Xg(t)

(k(t))α
= ν1/α (1− ν)(1−ν)/(αν) S(1) a.s.,

where

k(t) =
log log t

g−1(t−1 log log t)
(t > e),

and S(t) is the stable Lévy motion with stability index α.

Proof. Since S(t)
d
= t1/αSα(1), we have

X(t) = S(Dg(t))
d
= (Dg(t))

1/αS(1).
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Note that Dg(t)→∞, a.s. as t→∞ (see [31], Section 1.5.1). Consider now,

lim inf
t→∞

Xg(t)

(k(t))1/α
= lim inf

t→∞

S(Dg(t))

(k(t))1/α

= lim inf
t→∞

(Dg(t))
1/αS(1)

(k(t))1/α

= S(1)

(
lim inf
t→∞

Dg(t)

k(t)

)1/α

, a.s.

= S(1)ν1/α (1− ν)(1−ν)/(αν) a.s.,

where the last step follows from (38).

Remark 3.2. The results in this section hold for general subordinator. However, the

law of iterated logarithm results is true for only those subordinators for which the

corresponding Bernstein function is regularly varying (see Definition 3.1) with index

ν ∈ (0, 1). In case of gamma subordinator, the corresponding Bernstein function (see

(31)) g(u) = β log(1 + u/λ), u ≥ 0 is regularly varying with index ν = 1. Therefore, the

law of iterated logarithm can not apply to LLP. Moreover, the corresponding Bernstein

function of the tempered α̃-stable subordinator and the inverse Gaussian subordinator

are regularly varying with index ν = 0 and ν = 1, respectively. However, the

corresponding Bernstein function of the α̃-stable subordinator is regularly varying with

index ν = α̃ ∈ (0, 1), therefore the LIL is applicable in this case.

4. Conclusions

In this paper we have considered the LLP defined through the subordinated stable Lévy

motion delayed by the gamma process. The LLP can be considered as the extension of

the variance gamma process, known also as the Laplace motion. The variance gamma

process was applied in various fields including physics and finance. On the other hand

the introduced process is a process of independent stationary increments having Linnik

distribution, one of the most physically relevant example of geometric stable distribu-

tion. In this paper we have demonstrated main properties of the LLP, like probability

distribution features and law of the iterated logarithm. Finally, we have generalized

the LLP to the more general Lévy processes which can be used to the description of

heavy-tailed data.
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