

On reducing the time complexity of LU Factorisation and other applications.

Yajush Dev Rai Bhatia

WP/01/2023-24/IPM 2022-27 Batch

 December 2023

Disclaimer
The purpose of Working Paper (WP) is to help academic community to share their research findings with professional
colleagues at pre-publication stage. WPs are offered on this site by the author, in the interests of scholarship. The format
(other than the cover sheet) is not standardized. Comments/questions on papers should be sent directly to the author(s). The
copyright of this WP is held by the author(s) and, views/opinions/findings etc. expressed in this working paper are those of the

authors and not that of IIM Indore.

A New Algorithm for LU Factorization through

Fast Matrix Multiplication

Yajush Dev Rai Bhatia

December 23, 2023

Abstract

This paper presents a novel algorithm for computing the LU factorization of a
square matrix in O(nlog27) time complexity, significantly improving upon exist-
ing algorithms with O(n3) time complexity. The proposed algorithm has the
potential to revolutionize various computational tasks relying on LU factoriza-
tion.

1.1 Introduction

With the LUP decomposition, the matrix determinant can be computed in poly-
nomial time, thanks to the English computer scientist Alan Turing. The matrix
determinant has the same asymptotic complexity as matrix multiplication be-
tween two matrices of the same order.

Theorem 1.1

Let M(n) be the time required to multiply two n× n matrices over some ring,
and A is an n × n matrix. Then, we can compute the determinant of A in
O(M(n)) steps.

Various methods exist for multiplying n-order matrices, each with different
complexities. The standard matrix multiplication (schoolbook method) [3] has
a complexity of O(n3), while the Strassen algorithm [1] and the Coppersmith-
Winograd algorithm [2] have complexities of O(n2.807) and O(n2.376), respec-
tively. Optimized CW-like algorithms achieve an O(n2.373) complexity [4, 5, 6],
which is the same as that of matrix determinant computation using rapid matrix
multiplication.

Different approaches to compute the matrix determinant are available, each
with its complexity. The Laplace enlargement algorithm has an O(n!) com-
plexity, making it less efficient for larger matrices. The Division-free O(n4)
algorithm [7] also suffers from high complexity. However, the LUP decomposi-
tion method achieves an O(n3) complexity, making it a more efficient option.

1

Additionally, the Bareiss algorithm and Fast-matrix multiplication offer O(n3)
[8] and O(n2.373) [4] complexities, respectively, for determining the matrix de-
terminant.

The fast matrix multiplication is a galactical algorithm, making it impracti-
cal on existing datasets. Strassen proposed a method for determinant calculation
[1, 9], but it isn’t extensively used. I propose a simple recursive algorithm to
calculate the LU decomposition, which not only brings the determinant but also
other applications such as linear equation solving. Since it’s not an LUP factor-
ization, not all matrices can be factorized, but the ones which don’t require a P
matrix, such as variance-covariance matrix, can be solved by partially pivoting
all, as performed in Algorithm 2.2.2.

2.1 LU Factorization

The LU factorization is a fundamental technique in linear algebra that decom-
poses a square matrix into the product of a lower triangular matrix and an upper
triangular matrix. It has wide-ranging applications in various fields, including
solving systems of linear equations and calculating matrix determinants.


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


l1,1 0 0 0
l2,1 l2,2 0 0
l3,1 l3,2 l3,3 0
l4,1 l4,2 l4,3 l4,4



u1,1 u1,2 u1,3 u1,4

0 u2,2 u2,3 u2,4

0 0 u3,3 u3,4

0 0 0 u4,4


Now, LU Factorization is not always unique, but the algorithm will always

result in a unique solution. This is because the diagonals of the lower matrix
are fixed as 1 (lii = 1), making the factorization unique.


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


1 0 0 0
l2,1 1 0 0
l3,1 l3,2 1 0
l4,1 l4,2 l4,3 1



u1,1 u1,2 u1,3 u1,4

0 u2,2 u2,3 u2,4

0 0 u3,3 u3,4

0 0 0 u4,4


2.1.1 Lemma

If all n leading principal minors of the n×n matrix A are non-singular, then A
has an LU-decomposition.

Definition 2.1.2 Principal Minors

Let A be a square matrix of order n, and let I = {i1, i2, . . . , ik} be a non-
empty subset of {1, 2, . . . , n}. Then, the principal minor of A corresponding to
I, denoted by A[I, I], is the square submatrix of order k obtained by selecting
rows i1, i2, . . . , ik from A and the corresponding columns i1, i2, . . . , ik.

2

Example

A =

1 2 3
4 5 6
7 8 9


Principal Minor A[1, 1]

This is the smallest possible principal minor, containing only the first element
of A:

A =
[
1
]

Principal Minor A[2, 2]:

This minor includes the first two rows and columns of A:

A =

[
1 2
4 5

]
Principal Minor A[3, 3]:

This is the entire matrix itself, as all rows and columns are selected:

A =

1 2 3
4 5 6
7 8 9


Theorem 2.1.3

The LU Factorization resulting in a lower matrix with diagonal entries as 1 will
yield a unique solution.

Proof

Let us assume that the LU factorization is not unique. So,

A = LU = LIU = LDD−1U = (LD)(D−1U)

Where D ∈ Rn×n, D ̸= In.
Since it’s an LU decomposition, LD needs to be a lower matrix and D−1U

needs to be an upper matrix. Therefore, D has to be a diagonal matrix. Now,
the diagonal elements of D can’t be equal to 1 since D is not an identity matrix.

(LD)ii =
∑
j=1

LijDij = LiiDii +
∑

j=1,j ̸=i

Lij · 0 = 1 ·Dii + 0 ̸= 1

So, such D doesn’t exist, and hence it will always have a unique solution in this
format.

3

2.2 Applicability of LU Factorization

Since every matrix is not LU factorizable without the use of partial pivoting,
there are special matrices that are always LU factorizable. This includes sym-
metric matrices and diagonally dominant matrices.

Definition 2.2.1: Diagonally Dominant Matrices

Let A be a square matrix of order n. A is said to be strictly diagonally dominant
if and only if, for every row i (1 ≤ i ≤ n), the following inequality holds:

|aii| >
∑
j ̸=i

|aij | (1 ≤ j ≤ n)

Now, certain matrices can be converted to diagonally dominant form by
following these steps.

Algorithm 2.2.2: Permutation Matrix for LU Process

Input: A matrix which can be made strictly diagonally dominant.
Output: A permutation matrix which makes it diagonally dominant.

1. Identify the largest element. For each row, scan the elements below the
diagonal and find the element with the largest absolute value. If this
element is already on the diagonal, no pivoting is needed.

2. Swap rows. If the largest element is not on the diagonal, swap the row
containing it with the row containing the current diagonal element.

3. Update permutation matrix. Keep track of the row swaps in a separate
permutation matrix. For each swap, record a swap operation in the cor-
responding rows of the permutation matrix.

4. Repeat steps 1-3. Continue iterating through the remaining rows, per-
forming pivoting, and updating the permutation matrix until the entire
matrix is upper triangular.

Note: In case of ties, a column can be skipped and revisited in the later
steps.

Complexity Analysis of Algorithm 2.2.2

1. Step 1: Identifying the largest element in each row takes approximately
O(n − 1) comparisons for a row of size n. This is repeated for n rows,
making it O(n2).

2. Step 2: Swapping rows involves exchanging all elements between the two
rows, which takes O(n) operations. This happens only if a pivot is needed,
so its cost is amortized over the total number of pivots.

4

3. Step 3: Updating the permutation matrix is a constant time operation
(O(1)) for each pivot.

Total Complexity: O(n2 + n2 + n) = O(2n2 + n) ≈ O(n2)

Drawbacks of this Algorithm

When encountering ties (elements with the same largest absolute value) in Step
1, the chosen tie-breaking rule can influence the success of the algorithm. Some
rules might lead to unnecessary pivots or not guarantee a suitable pivot for
further elimination, potentially stalling the process.

Theorem 2.2.3: Theorem on Preserving Diagonal Domi-
nance

Gaussian elimination without pivoting preserves the diagonal dominance of a
matrix.

Corollary 2.2.3.1 (1st Corollary on Diagonally Dominant
Matrix)

Every diagonally dominant matrix is non-singular and has an LU-factorization.

Corollary 2.2.3.2 (2nd Corollary on Diagonally Dominant
Matrix)

If the scaled row pivoting version of Gaussian elimination recomputes the scale
array after each major step is applied to a diagonally dominant matrix, then
the pivots will be the natural ones: 1, 2, . . . , n. Hence, the work of choosing the
pivots can be omitted in this case.

Theorem 2.2.4: Every Symmetric Matrix is LU Factoriz-
able

Suppose A ∈ Rn×n is non-singular. Then A has an LDLT -factorization if and
only if A = AT and Ak is non-singular for k = 1, . . . , n − 1 (Cholesky Factor-
ization).

Proof
We can write A as

A = LDMT

where MT = D−1U . MT is unit upper triangular and

AT = A

AT = (LDMT)T = MDLT = LU = A

5

NowM(DLT) and LU are two LU-factorizations of A, and by the uniqueness
of the LU-factorization, we must have M = L. Thus, A = LDMT = LDLT is
an LDLT -factorization of A (Theorem 2.1.2).

Conversely, if A = LDLT is an LDLT -factorization of A, then A is symmetric
since LDLT is symmetric, and A has an LU-factorization with U = DLT .

Algorithm 2.2.5: Convert an LU Factorizable Matrix to its
LU Form

Input: A matrix of 2k order which is LU factorizable.
Output: LU Factorization of the given matrix.

Let a matrix be written in the form of four partition matrices, which will
always be possible if A−1 exists. The existence of A−1 will always be possible
in the case of an LU factorizable matrix, which will be discussed later.[

A B
C D

]
[
A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 D−CA−1B

]
Now calculate this matrix: [

I 0
CA−1 I

]
Now pre-multiply this matrix with the original matrix:[

I 0
−CA−1 I

]
×

[
A B
C D

]
Since the determinant of the pre-multiplied matrix is 1:

Det(AB) = Det(A)Det(B)

So the determinant of our original matrix will remain conserved. Now, the
algorithm must be applied recursively. After multiplying, the matrix will be an
upper triangular matrix whose determinant is easier to calculate.

Similar Example

1. Break the matrix in this format.


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


1 0 0 0
0 1 0 0
l3,1 l3,2 1 0
l4,1 l4,2 0 1



a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
0 0 u3,3 u3,4

0 0 u4,3 u4,4



6

2. Finding Inverse of U matrix

U−1 =


1

a1,1

1
a1,2

u′
1,3 u′

1,4
1

a2,1

1
a2,2

u′
2,3 u′

2,4

0 0 u′
3,3 u′

3,4

0 0 u′
4,3 u′

4,4


3. Calculating AU−1

AU−1 = L =

[
l3,1 l3,2
l4,1 l4,2

]
=

[
a3,1

a1,1
+

a3,2

a2,1

a3,1

a1,2
+

a3,2

a2,2
a4,1

a1,1
+

a4,2

a2,1

a4,1

a1,2
+

a4,2

a2,2

]

4. Calculating L−1

L =


1 0 0 0
0 1 0 0

a3,1

a1,1
+

a3,2

a2,1

a3,1

a1,2
+

a3,2

a2,2
1 0

a4,1

a1,1
+

a4,2

a2,1

a4,1

a1,2
+

a4,2

a2,2
0 1


5. Calculating U = L−1A

U = L−1A =

[
u3,3 u3,4

u4,3 u4,4

]
=

(−a3,1

a1,1
− a3,2

a2,1

)
∗ a1,3 +

(
−a3,1

a1,2
− a3,2

a2,2

)
∗ a2,3 + a3,3

(
−a3,1

a1,1
− a3,2

a2,1

)
∗ a1,4 +

(
−a3,1

a1,2
− a3,2

a2,2

)
∗ a2,4 + a3,4(

−a4,1

a1,1
− a4,2

a2,1

)
∗ a1,3 +

(
−a4,1

a1,2
− a4,2

a2,2

)
∗ a2,3 + a4,3

(
−a4,1

a1,1
− a4,2

a2,1

)
∗ a1,4 +

(
−a4,1

a1,2
− a4,2

a2,2

)
∗ a2,4 + a4,4



Now, we can see that in this, the first left and bottom right matrices are
still not in upper matrix form. This algorithm can be used recursively to
change them to this format. We will have to do this about log2 n times, as
each time we are dividing the matrix by 2. So, the final time complexity
will be O(nlog7)

Note Multiplying with a lower matrix recursively won’t change the solution
space of the matrix because we are technically doing elementary row operations,
which do not change the solution space as well as the kernel of the matrix. Also,
the calculation of U−1 need not be done, and instead, the lower matrix should
be updated directly as per the partition matrix formula. It is shown in the
algorithm for illustration.

7

Step Count for Algorithm 2.2.5

(a) Creation of Partition matrices as shown in Algorithm 2.2 O(n2)asitrequiresn2

items to be updated and stored.

(b) Calculation of A−1: Since our original matrix is of n×n dimensions,
the matrix will be of n/2× n/2. The number of steps for its inverse
according to Strassen’s Algorithm (O(nlog27))

(c) Pre-multiplying by C: Since both A and C are of n/2, the number
of steps via Strassen’s Algorithm (O(nlog27)))

(d) Updating of Lower matrix by adding CA−1 terms. O((n/2)2) as n/2
items are being updated.

(e) Updating the DCA−1B terms in the upper matrix. The number
of steps via Strassen’s Algorithm O(nlog27), where o is a constant.
O((n/2)2) as n/2 items are being updated.

(f) Now calling this recursively for smaller multiplications (Step 1-Step
5 where the partition matrix is updated).

(g) Multiplying all the lower matrices achieved from the decomposition.
This will be O(nlog27) since the matrices are getting reduced by a
factor of 2 in each recursion.

(h) After getting the final L matrix, L−1 can be calculated in O(n2) and
then pre-multiplied to A. O(nlog27)
.

Total Steps = O(nlog2 7).

Theorem 2.2.6

An A−1 will always exist in the types of partition defined if it’s an LU Factor-
izable matrix.

Proof: Since the LU Factorizable matrix has all principal minors as non-zero
(Lemma 2.1.1), the determinant of A will always be non-zero. A matrix in each
recursion will be made by removing the last n/2 rows and last n/2 columns of the
same index. Since we are removing the columns and rows with the same index
numbers, this will result in a principal n/2-th minor which is non-zero, implying
the determinant of that partition matrix is non-zero and hence invertible.

Example

Let us take this matrix. 
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4


8

Lemma 2.1.1 implies that.

Det


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 ̸= 0

Det

a2,2 a2,3 a2,4
a3,2 a3,3 a3,4
a4,2 a4,3 a4,4

 ̸= 0 and Det

a1,1 a1,3 a1,4
a3,1 a3,3 a3,4
a4,1 a4,3 a4,4

 ̸= 0

Det

a1,1 a1,2 a1,4
a2,1 a2,2 a2,4
a4,1 a4,2 a4,4

 ̸= 0 and Det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ̸= 0

Similarly, there will be a case:

Det

[
a1,1 a1,2
a2,1 a2,2

]
̸= 0 (Condition 1)

and

Det
[
a1,1

]
̸= 0 (Condition 2)

Condition 1 and Condition 2 are required for the existence of A−1 in our case,
and thus the Lemma already provides this condition.

Conclusion

So, it is possible to LU factorize a matrix if possible, in the same time complexity
of matrix multiplication. Some drawbacks are that for expanding it to LPU
factorization, partial pivoting might be required which makes it generalizable
to all matrices and algorithm 2.2.5 can naively be used for symmetric matrices
and matrices which can be converted to diagonally dominant or LU factorizable
matrices.

Appendix

Example 1

Let us take the matrix S: [
12 06
18 05

]
Recursion 1

9

[
12 06
18 05

]
=

[
1 0
1.5 1

] [
12 6
0 −4

]
Step 1

Calculation of A−1

[
1/12

]
Step 2

Calculation of CA−1

[
18
] [

1/12
]
=

[
1.5

]
Step 3

Updating Lower Matrix [
1 0
1.5 1

]
Step 4

Updating Upper Matrix [
12 6
0 −4

]

Example 2

Let us take the matrix: 
8 9 10 11
16 30 33 36
24 75 97 105
40 117 233 268


Recursion 1

8 9 10 11
16 30 33 36
24 75 97 105
40 117 233 268

 =


1 0 0 0
0 1 0 0
−5 4 1 0
−7 6 0 1



8 9 10 11
16 30 33 36
0 0 15 16
0 0 105 129


Step 1

Calculation of A−1

10

[
5/16 −3/32
−1/6 1/12

]
Step 2

Calculation of CA−1

[
25 75
40 117

] [
5/16 −3/32
−1/6 1/12

]
=

[
−5 4
−7 6

]
Step 3

Updating Lower Matrix 
1 0 0 0
0 1 0 0
−5 4 1 0
−7 6 0 1


Step 4

Updating Upper Matrix (In this, it is not necessary to update all the rows
(Highlighted ones which are outside are partition matrix in recursion 2) but
only the matrix we have divided because it wouldn’t matter in our recursive
process and the correct matrix can be found by taking L−1 and pre-multiplying
by A after all the recursions are over, which will take fewer steps)

8 9 10 11
16 30 33 36
0 0 15 16
0 0 105 129


Recursion 2 for upper matrix

8 9 10 11
16 30 33 36
0 0 82 89
0 0 128 139

 =


1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1



8 9 10 11
0 12 13 14
0 0 15 16
0 0 105 129


Recursion 3 for lower matrix

8 9 10 11
0 12 13 14
0 0 15 16
0 0 105 129

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 7 1



8 9 10 11
0 12 13 14
0 0 15 16
0 0 0 17


The Recursion will be reduced by a factor of 2 in every step so the sum of it
will be like:

11

O(n)w + 2O
(n
2

)w

+ 4O
(n
4

)w

+ . . . ≤ k(n)w + 2k
(n
2

)w

+ 4k
(n
4

)w

+ . . .

This will converge as it has a ratio of 1
2w−1 which is always less than one as the

theoretical bound on w > 2. So, it will converge. This can also be seen as:

T (n) = 2T
(n
2

)
+O(n)w

Multiplying all the Lower Matrices:
1 0 0 0
0 1 0 0
−5 −4 1 0
−7 6 0 1




1 0 0 0
0 1 0 0
−5 −4 1 0
−7 6 0 1



1 0 0 0
0 1 0 0
0 0 1 0
0 0 7 1

 =


1 0 0 0
2 1 0 0
3 4 1 0
5 6 7 1


The multiplication steps will take less time as it needs to multiply only matrices
of lower dimensions which will be recursive and make an infinite GP that con-
verges to nlog27. It will be sort of this kind, and essentially only 1 multiplication
is required, that is of n

2 order. The rest is equivalent to copying the matrix:[
I 0
A I

] [
B 0
0 I

]
=

[
B 0
AB I

]
The other multiplication of lower updated matrices won’t matter as:[

B 0
AB I

] [
I 0
0 C

]
=

[
B 0
AB C

]
So effectively, it is just joining the matrix. So effectively we need only 1 multipli-
cation of n

2 order which reduces recursively by a factor of 2 and, hence forming
an infinite GP.

Hence 
8 9 10 11
16 30 33 36
24 75 97 105
40 117 233 268

 =


1 0 0 0
2 1 0 0
3 4 1 0
5 6 7 1



8 9 10 11
0 12 13 14
0 0 15 16
0 0 0 17


Example 3

Let us take a bigger 16× 16 matrix to see how the GP terms come.
a1,1 a1,2 a1,3 · · · a1,16
a2,1 a2,2 a2,3 · · · a2,16
...

...
...

. . .
...

a16,1 a16,2 a16,3 · · · a16,16


12

It will have a lower matrix in this format.
1 0 0 0 0 · · · 0
l2,1 1 0 0 0 · · · 0
l3,1 l3,2 1 0 0 · · · 0
...

...
...

. . .
...

. . .
...

l16,1 l16,2 l16,3 · · · l16,14 l16,15 1


Now Recursion 1 will take time k

(
n
2

)w
since n is 16 and we are multiplying

matrices of order
(
n
2

)
. For 4 × 4 matrices time will be 2k

(
n
4

)w
. For 2 × 2

matrices time will be 4k
(
n
8

)w
. For 1× 1 matrices time will be 8k

(
n
16

)w
. As we

can see, it’s an infinite GP with r as 1
2w−1 so it converges.

Note - This algorithm is defined for 2k order matrices, but any matrix can be
converted to that order by adding 0 to the right of the present rows and for new
rows an identity-type matrix can be made.

Example 4

Let us take matrix A

A =

 8 9 10
16 30 33
24 75 97


This is equivalent to solving. 

8 9 10 0
16 30 33 0
24 75 97 0
0 0 0 1


Recursion 1

8 9 10 0
16 30 33 0
24 75 97 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
−5 4 1 0
0 0 0 1



8 9 10 0
16 30 33 0
0 0 15 0
0 0 0 1


Recursion 2

8 9 10 0
16 30 33 0
0 0 15 0
0 0 0 1

 =


1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1



8 9 10 0
0 12 13 0
0 0 15 0
0 0 0 1



13

Multiplication of Lower Matrices
1 0 0 0
0 1 0 0
−5 4 1 0
0 0 0 1



1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
2 1 0 0
3 4 1 0
0 0 0 1


Now the extra rows and columns can be removed.

A =

 8 9 10
16 30 33
24 75 97

 =

1 0 0
2 1 0
3 4 1

8 9 10
0 12 13
0 0 15



References

[1] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
Mathematik, 13(4), 354–356. https://doi.org/10.1007/bf02165411

[2] Coppersmith, D., & Winograd, S. (1990). Matrix multiplication
via arithmetic progressions. Journal of Symbolic Computation, 9(3),
251–280. https://doi.org/10.1016/s0747-7171(08)80013-2

[3] Stothers, A. (n.d.). On the complexity of matrix multipli-
cation. School of Mathematics, University of Edinburgh.
https://www.maths.ed.ac.uk/sites/default/files/atoms/files/stothers.pdf

[4] Williams, V. (n.d.). Multiplying matrices in
O(N2.373) time. Massachusetts Institute of Technology.
https://people.csail.mit.edu/virgi/matrixmult-f.pdf

[5] Le Gall, F. (2014). Powers of tensors and fast matrix multiplication.
Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation. https://doi.org/10.1145/2608628.2608664

[6] Davie, A. M., & Stothers, A. J. (2013). Improved bound for
complexity of matrix multiplication. Proceedings of the Royal So-
ciety of Edinburgh: Section A Mathematics, 143(2), 351–369.
https://doi.org/10.1017/s0308210511001648

[7] Rote, G. (2001). Division-free algorithms for the determinant and the
Pfaffian: Algebraic and combinatorial approaches. Computational Dis-
crete Mathematics, 119–135. https://doi.org/10.1007/3-540-45506-x9

[8] Bareiss, E. H. (1968). Sylvester’s identity and multistep integer-
preserving gaussian elimination. Mathematics of Computation,
22(103), 565–578. https://doi.org/10.1090/s0025-5718-1968-0226829-0

[9] Baur, W., & Strassen, V. (1983). The complexity of par-
tial derivatives. Theoretical Computer Science, 22(3), 317–330.
https://doi.org/10.1016/0304-3975(83)90110-x

14

