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Abstract

Over the last three years, the COVID-19 pandemic has posed unprecedented challenges and
exposed vulnerabilities in production strategies and supply chains worldwide. Apart from creating
a global public health crisis, the pandemic disrupted the supply of many medically critical resources
such as medical oxygen, vaccines and medicines, ventilators, personal protective equipment (PPE),
and staff to care for patients. The dramatic surge in demand created severe shortages and scarcity
of these resources. The problems in this thesis are motivated by the challenges in managing the
medical oxygen supply chain in India. The shortage of medical oxygen in India highlighted the
lack of insufficient domestic production capacity and the need for an integrated capacity-inventory
strategy to respond to the crisis. In response, the government made several interventions to ease
the supply constraints. The government made imports of around 50,000 metric tonnes (MT) of
medical oxygen. In addition to imports and redeploying oxygen production from other industries,
the government allocated investments for installing over 4,000 Pressure Swing Adsorption (PSA)
plants with a daily capacity of 18,000 MT in health facilities across the country. The amount of the
consumption of oxygen and the strain on the capacity of healthcare facilities treating COVID-19
patients highlighted the problem of indiscriminate and wasteful use of oxygen.

The state governments conducted oxygen audits in several hospitals and were able to reduce
demand by 10-30%. But as much as rational use of oxygen is desirable, it is often challenging to
control wastages, and attempting to average out requirements may become counterproductive. The
demand for medical oxygen, particularly during a pandemic, is highly volatile and influenced not
only by wastage in handling and delivery, but also by many randomly varying factors such as the
spread of infection, change in positivity rates, enforcement of social distancing measures such as

the imposition of lockdowns, the number of vaccinations administered, and so on.



In this thesis, we incorporate the relevant features such as simultaneous capacity addition,
unreliable outsourcing supply, and uncertain wastage and demand from the motivating context to
address the capacity and production planning problem using mathematical tools involving dynamic
programming and stochastic processes.

In the first problem of this thesis, we find the optimal simultaneous capacity, production, and
outsourcing strategies in the presence of an outside supplier when both supply and demand un-
certainties exist. We propose a dynamic programming formulation of the problem and derive
the optimal capacity addition and inventory policies structure for a finite time horizon with non-
stationary demand and a random yield type uncertainty in outsourcing. We demonstrate the benefit
of dynamically expanding capacity through numerical experiments under both scenarios of reliable
and unreliable outsourcing supply. We find that when outsourcing is unreliable, there is a sub-
stantial benefit in dynamically adding capacity even when the lead time for capacity addition is
longer. The value of the capacity addition option is higher when outsourcing is unreliable and has
a non-stationary structure compared to a system where outsourcing is completely reliable.

Wastage of medical oxygen during the delivery process presents a challenging problem in the
healthcare industry for managing a rising caseload during a pandemic. Wastages increase demand
when the actual requirements are low, widening the demand-supply gap. In the second problem of
the thesis, we focus on this crucial feature of wastage during the demand fulfillment process. We first
conduct the analysis through a single-period model and use the newsvendor setting to explore the
value of information about wastage on optimal decisions. Then we extend the theoretical analysis
to a multiperiod setting and build a stochastic, periodic review inventory model to study the impact
of wastage on capacity addition and production decisions and the total cost of running the system.

We conduct numerical experiments to illustrate the structure and demonstrate the sensitivity of



the optimal policy to different cost and model parameters.

Models in the inventory management literature have employed the Markovian structure to cap-
ture the impact of uncontrollable environment on demand. In the third thesis problem, we employ
the specific structure of the Markov-modulated demand process to incorporate the influence of
environmental and social factors. This becomes a natural extension of the second problem in the
thesis. We construct a finite horizon, dynamic inventory model to find the structure of optimal
production policies in a discrete-time setting. We analyse the impact of the uncertain wastage and
demand state on optimal policies and cost to the decision maker.

The shortages of critical products such as medical oxygen, vaccines, PPE, and so on linked to
the pandemic have highlighted the importance of building domestic production capacity to manage
these resources efficiently. Industry experts are encouraging reshoring of critical supply chains.
In its entirety, we expect our studies will be helpful and support governments and policymakers
response with production planning and resource expansion. In general, the strategy of simultaneous
optimization of capacity, production, and outsourcing decisions will be valuable in environments
where dependencies on outsourcing supply are risky, shortage costs are significantly high, and the
installed capacity can be used for other operations during periods of low demand, the marginal
capacity cost is much lower than the effective marginal benefit it can provide over time, and the
contribution margin on units produced is high. The proposed models in this thesis can also be
generalized and applied to any scenario where there are high and significant chances of wastage
of inventory during demand fulfillment. The insights from this study could be used in various
contexts such as medical oxygen and vaccine supply chains, blood inventory management, food-

bank operations and so on.
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Chapter 5

Summary

The COVID-19 pandemic disrupted the supply and caused severe scarcity of many medically es-
sential items such as Personal Protective Equipment (PPE), face masks, medicines, ventilators and
medical oxygen, household necessities (hand sanitizer, toilet paper) and even critical automotive
and electronics components (semiconductors). While the disruption due to COVID-19 pandemic
was of extraordinary magnitude and scale, it is essential to note that supply chains are constantly
exposed to risks stemming from natural disasters, climate change, trade-wars, geopolitical and eco-
nomic uncertainties, cyber and terrorist attacks. Before the pandemic, supply chains were focused
on supplying goods in a cost-effective manner relying on just-in-time systems and outsourcing and
offshoring major parts of their manufacturing operations. The Covid-19 pandemic created a window
of opportunity for companies to fundamentally re-evaluate their supply chains and the approach to
global manufacturing and sourcing. With demand surges, unreliable supplies, reduced efficiency and
increased wastages, the existing steady-state models designed to meet historically stable demand

requirements proved to be inadequate. Manufacturing firms have been updating their production
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schedules, improving their risk-monitoring capabilities by increasing visibility to their suppliers’
performance and building capacity to respond rapidly to shocks by developing new inbound routes
to meet the production challenges (Butt, 2022). Industry reports and articles issued by consultan-
cies such as BCG and Deloitte, highlight that nations worldwide are re-evaluating their outsourcing
strategies to bolster resilience in supply chain of critical industries to survive future crises (Aylor
et al., 2020; Rojas et al., 2022). Academic scholars of global supply chain management (Sodhi et al.,
2021) have encouraged and recommended onshoring and near-shoring manufacturing operations of

critical medical products.

The studies in this thesis are an attempt to respond to the calls for research for managing
stockpiles, building capability and capacity of medically critical goods such as PPE, ventilators,
vaccines, medicines and medical oxygen, in order to respond to massive public health emergencies
such as pandemics. We take an integrated approach to determine cost-effective systems and policies
that adjusts to the volatility of demand during pandemic by taking into account the tradeoff between
how quickly the system can respond to demand spikes and with the cost of maintaining capacity
and inventory, the uncertainty in outsourcing supply, increased wastage in the system, and the
ability to dynamically expand capacity. Our models can guide decision makers to jointly optimize
the three levers of capacity, production and outsourcing in a periodic review finite horizon setting.
In addition to planning for medical oxygen, we list some studies from recent literature as examples

where similar trade-offs may arise and these models could be applicable.

e Vaccines: In their article, Castillo et al. (2021) estimate the global benefits from vaccine
capacity already in place, and find that there is substantial benefits in undertaking additional

capacity investment. They urge governments and international organizations to contract
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with vaccine producers to further expand capacity and suggest market design to incentivize
manufacturers to boost their production capacity. The progress of the pandemic and the inter-
temporal trade-off between cost of delaying capacity expansion vs. higher future capacity
complicates the capacity expansion decisions. Our models can be used by governments and
vaccine manufacturers to determine when to expand capacity and how much. Dai and Song

(2021) identify this as an important research opportunity for management scientists.

e ICU: Similar to our study, Gambaro et al. (2023) were motivated by the shortage of Covid-19-
related intensive care units (ICU) capacity in 2020 in Italy. They first build a robust estimation
and forecasting procedure of epidemic and demand models, and then an optimization model
to support decision-makers’ response in the early stages of a pandemic with ICU capacity
expansion. Our studies provide a general approach for capacity expansion under uncertainty

to meet the expected surge in demand for the resources.

e Critical supplies: Li et al. (2023) highlight that “Going beyond stockpiles, there is a need
to identify and reserve backup domestic manufacturing capacity and develop domestic man-
ufacturing and related capabilities”. Sodhi and Tang (2021) analyse the trade-offs between
inventory, capacity and capability and develop a three-tiered response system for ensuring
management of supply of ventilators and PPE during rare emergencies like pandemics. Li
et al. (2023) build a parsimonious two-period model of a system integrating inventory, ca-
pacity, and capability to cope with uncertain demand for consumable pharmaceuticals and
medical supplies (masks and PPE), created by a pandemic or other major public health emer-

gency.

Our model takes a multi-period view and is an extension of their two-period model.
e Our models could also be utilised in the context of slow-onset disasters like droughts, where
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the planning horizon can be multiple years and each time period can correspond to months
and years. Extensions of our model could address question of where to install capacity or to
determine the optimal location and capacities of medical supplies for disaster preparedness in

the event of a hurricanes, floods and storms.

The problem with wastage can be generalized and applied to any capacitated-production-
delivery system where there is a chance of wastage during demand fulfilment such as vaccines,
blood and even food delivery.

Vaccine wastage is an important component to calculate vaccine needs. According to the World
Health Organisation, around 50 percent of vaccines get wasted annually during distribution (WHO,
2005). There is another aspect to wastage in vaccines that occurs due to vaccine expiry and loss of
product integrity in the supply chain. Failing to accurately account for wastage may cause either
vaccine shortages or excessive procurement, thereby causing more wastage through expiry. Our
models can be extended and modified to factor specific features such as wastage through expiry to
build efficient and effective immunization strategies and practices.

Similarly, inventory management and distribution of blood and blood products is a challenging prob-
lem for blood banks and has been extensively studied by researchers. Blood is considered as a scarce
resource and the main challenge is to plan inventory in such way that shortages are minimized and
wastage due to outdating and spoilage are reduced. Another natural extension of our models would

be to incorporate the perishable nature of the product and develop dynamic blood ordering policies.

In particular, we have considered three problems in capacity planning and inventory control by
focusing on supply side issue such as unreliable supplier, and wastage of inventory during demand

fulfillment. The dynamic programming approach provides an elegant mathematical framework to
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analyse these problems.

Our models are a close approximation of the problem faced by the government in planning for
medical oxygen in India, as described in Chapter 1. We capture several important features from
the context such as the long lead time of approximately 3-4 weeks in setting up oxygen plants.
Few suppliers with limited capacities and all facing unprecedented demand resulted in rationing,
which is captured through a random yield uncertainty associated with supply. We also capture
the phenomena of demand in pandemics or similar disruptions through a one-time demand surge
in the planning horizon. This study provides optimal policies which can be used to scale oxygen
generation capacities for long-term sustainability and ensure increased access to medical oxygen to
serve all kind of patients requiring oxygen therapy. Specifically, our work can guide planners to
answer pertinent questions such as when and how to build capacity and how much to order from
the outside supplier, such that the decision maker does not carry excess production capacity and
is able to meet demand during the peak periods.

As highlighted in Chapter 1, it is extremely challenging to identify wastage when there is mas-
sive strain on healthcare systems. We address the issue of planning capacity and inventory in
the presence of uncontrollable wastage during demand fulfillment in hospitals, or at the point of
consumption. In the second problem, our focus is on this critical aspect of wastage that arises
due to clinical and operational inefficiencies. Theoretically, we provided an extension of the classic
newsvendor model to account for random wastage. We demonstrate the value of incorporating and
accounting for the random nature of wastage. We also analyse the wastage problem in a multi-
period finite horizon setting using the dynamic programming approach.

In addition to wastage, in the third problem, we capture the impact of dynamically evolving and

fluctuating environmental conditions on demand through a Markov model. Markovian structure of
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demand also allows the possibility of modeling patients’ health conditions as discrete states, and
the transition from one health state to another. These models have been used with increasing
frequency in medical decision making and in epidemiological and clinical evaluations, as it provides
a more accurate representation of prognosis that patients may undergo. We employ the Markov

modulated demand model for economic evaluation and finding cost-effective optimal strategies.

Through our research we find that there is significant benefit in dynamically expanding capac-
ity of critical resources such as medical oxygen. This provides evidence for policy and action to
strengthen the oxygen infrastructure that can improve health outcomes and save lives.

Our studies also show that having information and accounting for wastage at the point of consump-
tion when planning inventory leads to cost savings. However, we show that higher the wastage in
the system, higher the need to add more inventory and capacity. Policy makers can consider the
trade-off between building more capacity that ensures access to the resource in the long-term and

exerting efforts by conducting audits to reduce wastage and demand requirements in the short-term.

It was observed that in the face of shortage of medical oxygen in India, there was a booming
black market for oxygen cylinders as people struggled to get access to this life saving commodity.
Medical oxygen cylinders were selling for ten times their price!. Rationing of medical oxygen was
another challenge for the government as oxygen had to be transported from oxygen-rich states to
oxygen-poor states. Many states struggled to meet demand through the quota allocated to them

2

and urged the Centre to raise allocation®. In addition to regional disparities in oxygen produc-

tion capacity and logistical problems, wastage of oxygen at the point of consumption inflated the

Ihttps://www.vice.com/en/article/7kv95q/india-black-market-oxygen—only-the-rich-can-survive-covid
’https://www.thehindu.com/news/cities/mumbai/raise-oxygen-allocation-by-200-mt-state-tells-
centre/article34483387.ece
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requirements. The government found that some states were demanding oxygen more than their
actual requirements®. The emergence of black markets and problems in rationing generally arise
whenever there are large-scale shortages and uncertain supplies of critical products such as medical
oxygen or any life saving drug.

The studies in this thesis, by providing optimal capacity and inventory policies during pandemics
and disruptions in general, can have far-reaching implications by helping to circumvent these serious

issues, and ensure equitable distribution of highly valuable resources.

An integrated model with capacity, production and outsourcing option, together in the presence
of wastage during demand fulfilment process would provide a more realistic and representative of
the motivating context. However, when considered all together, the model becomes too complicated
to analyse the impact of different drivers and levers. Hence, we decided to segregate the problem
into pieces to understand the individual impact of each driver. Now that we have examined the
problems separately, we would be extending this work by modelling a joint, integrated scenario
with all relevant aspects and mathematically solving the comprehensive model to see if the results
are consistent,.

While the work in this thesis takes the perspective of a central planner or a decision maker in an
integrated set-up and answers questions such as when and how much, the problem can also be
explored through a decentralised setting to answer questions such as where to install capacity. A
decentralised view of the problem would be able to capture the spatial distribution of production
plants that can serve demand in restricted geographical regions. This view opens up several avenues

for future research that can addresses allocation problem, facility location problem, transportation

Shttps://www.indiatoday.in/coronavirus-outbreak/story/mumbai-delhi-oxygen-crisis—covid-cases-
deaths-1799979-2021-05-07
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and transshipment of inventory with time-varying demand in multi-period setting.

Further extension of our work could involve explicitly accounting for the transmission of in-
fectious diseases in large populations and its impact on demand for medically critical items. The
mathematical disease spread modelling techniques which can capture population characteristics,
disease characteristics and resources constraints, will help build more effective optimal dynamic
health policies such as that related to medical oxygen. These models could be solved through
dynamic programming techniques but not without challenges. To solve the problem of modelling
demand of medically critical items by accounting for infection spread through dynamic program-
ming method will pose challenges two main challenges. The first challenge is the size of the state
space. The size of state space in simple mathematical disease spread models such as SIR becomes
prohibitively large which makes the dynamic programming methods inefficient. The other chal-
lenge is the inherent complexity in measuring the spread of disease. Asymptomatic population,
challenges in diagnostic tests and other constraints create a lot of uncertainty in the actual state
of the epidemic. This means that the true state of disease spread and thereby the demand of
medically critical items is unknown or unobservable. Future research work can focus on solving
these problems through approximate dynamic programming techniques. While we assume perfect
knowledge of demand states, extensions can address the above issues through considering partially

observed Markov-modulated demand models.
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Chapter 6

Appendix

6.1 Theorem 1: Convexity of G;(I;, z, 0;)

Proof of Theorem 1. We prove this by induction. From Lemma 1, we have that the one-period cost
cemb + cpxp, + L(Ih + xp,) is convex. Since convexity is preserved under minimization operator,
we have that

Gy(I1,71,01) = inf {cMGl + cpxp, + L(I1 + xp,) + aE[Go(I1 + xp, — &1, 20,01 + vo)]} is convex.

zp, €[0,01

G2(12722792) = ll’lf {CA102+Cp$p2 +L(12+1L'p2)
Zpgy €[0,02]

+ inf {csxs2 + oE[G (12 + zp, + 25, — &2, 21,62 +vl)]}}

Tap >
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Since G4 (., .,.) is convex, so is aEGy (., .,.) because convexity is preserved under linear transforma-
tion and expectation.

= csxs, + aE[G1(.,.,.)] is convex.

= inf,,, >0 {csx52 + aE[G1(,,.,.)] ¢ is convex, as convexity is preserved under minimization.
Then, inf,  e[0,0,] {CMHQ +epp, + L(I2+xp,) +infy >0 {csxs,z +aE[Gy(., ., .)] } } is convex because
of the fact that sum of two convex functions is convex and infimum preserves convexity. Then, for

t>1

)

Vi—12

Gi(It, 2t,0:) = inf>0 {ccvtl +cypby +  inf {cpa:pt + L(I; + zp,) + in£0 {csmst + aE[Gi-1 (., ., )]}}}

‘T‘Ilt G[O,ﬁt]

is convex, using the same properties of convexity. It directly follows that Gy(Iy, 2¢, ;) is convex for

all ¢. O

6.2 Theorem 2: Convexity of G} (I, 2, 0;)

Proof of Theorem 2. We prove this by induction. From Lemma 1, we have that the last-period cost
function cp6h + cpxp, + L(I1 + xp,) is convex. Since convexity is preserved under minimization,
G%(Il, 21, 01) = infogxm <6, {cM01 + Cp(il’pl — I1> + L(Il + 17111)} is convex.
Continuing with induction, we show that G4 (12, 22,62) is convex.
Gy (Ia,22,00) = inf cpbs + cpay, + L(Is +
5 (12, 22, 02) m7‘2€[0792}7x5220{ M0z + cpp, + L(I2 + 2p,)

FacspoTs, + aEszﬂz [G%([Q + Lpoy + /62'1752 - £2’ 21, 02 + Ulﬂ}
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Since Iz +xp, + B2xs, —&2 and Oz 4 vy are linear in all the terms, then by Theorem 5.7 of Rockafellar
(2015) and the fact that GY(.,.,.) is convex, we get that Gy (I2 + zp, + Boxs, — &2, 21,02 + v1) is
convex. Since convexity is preserved under expectation, we have that aEg¢,Eg,[GY(I2 + zp, +
Bas, — &2, 21,02 +v1)] is convex. As sum of convex functions is convex, then cas0s + cpp, + L(I2 +
Tp,) + acsproxs, + aBe,Ep, [GY (12 + p, + Pots, — &2,21,02 + v1)] is convex. Since convexity is
preserved under infimum operator, we have that infzme[()792]7ms22() {cM€2 + cpp, + L(Iz + xp,) +
acspots, + ale,Eg, [GY (12 + xp, + fots, — &2, 21,02 + vl)]} is convex. Therefore, G4 (I3, 22, 02) is
convex. Then, by the same properties of convex functions, it can be easily shown that for ¢ > [,
G (I, 2, 0;) is convex. Now, we assume that G} (I;_1,24—1,0:—1) is convex for any t. Using the
induction hypothesis and the arguments used in the base case, it directly follows that G (I, 2, 0;)

is convex. Od

6.3 Theorem 3: Structure of optimal policy under reliable

outsourcing
Proof of Theorem 3. Substitute z = 6; + vy, = = I; +x,,, and y = I; + x,, + 5,, rewriting

equation (2.4)

Nt =, it Lo 1)+ L@+ el = o)+ 0BGy - &9} (1)

it e -eo@=m+ L@+ ut {1+ 0BG - 6.2

_ xe[113£+0t] {(cp —c¢s)(x—IL;)+ L(z) + L(aj)} (6.2)
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where

L(x) = inf {ealy — 1) + aE[Groa(y — & 71-1,2)])

Note that L(z) is a convex function in 3. Let S; be the minimizer of L(z).

(6.3)

Also, (¢, —c5)(z — I;) + L(x) + L(z) is a convex function in x, there exists a minimizer By such that

Ft(IthvZ) =

Case 1: I; > By

(cp—cs)Gt—l—L(It—i-@t)+l~/(It—|—9t)7 It < Bt —Gt
(¢p — ¢a)(By — It) + L(B:) + L(By), By -0, <I; < By
L(IL;) + L(I), I, > B,

Ft(1t72t7 Z) = L([f) + L(It)

= L(I;) + yi;lgt{cs(y — 1)+ aE[Gi_1(y — &, z—1, 2)] }

cs(Sy — It) + aEB[Gi—1 (St — &, z—1, 2)], I, < S

L(L) +

aR[Gi_1 (It — &, 2e-1, 2)], I > 8
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Case 2: Bt —9,5 S It S Bt

Uy (Iy, 20, 2) = (¢p — o) (By — It) + L(By) 4+ L(By) (6.6)
= (cp —¢s)(By — It) + L(By) + yziéléh{cs(y —It) + aE[Gi1(y — &, 2-1,2)]}

= ¢p(Br — It) + L(By) + yigllgt{cs(?/ = By) + oE[Gi-1(y — &, 2e-1, 2)]}

cs(St — By) + aE[G—1(S: — &, 2t-1, 2)], By < 5
= Cp(Bt - It) + L<Bt) +
aR[Gi (Bt — &, 261, 2)], Be 2 5
Case 3: I, < B; — 6,
Ty(Ii, 20, 2) = (e — €00 + L(L + 6,) + L(1, + 6,) (6.7)

(cp —¢s)0 + L(I; + 6;) + >iln-f|-9 {cs(y — I) + aE[Gi—1(y — &, 2e-1, 2)]}

Y

cpby + L(I + 6;) + y>iIn£-9 {ecs(y — It — 04) + aE[Gi-1(y — &, 2e-1,2)]}

cs(S¢ — It — 01) + aE[Gy 1 (St — &, 201, 2)], I + 60, < St
= cpﬁt + L(It + 6’t) +

aE[Gi—1 (I 4+ 0y — &, 201, 2)], I+ 0, > S,

Summarizing the three cases above, the optimal order quantities are:

T, = max{(),mm{ﬁt,Bt — It}}

N max{O,St — (I + x;t)}
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To characterize the capacity addition policy for ¢ > [, we can rewrite (2.5) as

Gi(It, 24, 01) = info,_;>0{ccvi—t + el + Ue(ay,, 2%, I, 2t 06, ve-1) }

*

Define h(xy,,x3,, It, 2¢, 0, vi-1) = ceve—y + ey + Uiy, 2%, Ity 26,04, v4—). From Theorem 1 we

have that h is convex.

Oh(ay, a3, Iy, 2, 00, vi—1)
vy

*
S¢)

’
*
:CC+Ft($pt7$ If,,Zt,et,'Utfl)

Oh(z,, a7 It,2¢,0¢,0)

due_y

Let Ly =inf{z :

> 0}.

Then for z; > Ly

8h($* zt It,Zt,gt,’Utfl) 8h(:v* xt It,Zt,gt,O)

pt’ St pt’ S¢?
Ovy_y a Ovy_y
= C¢ + Ft(x;;t; :I::t7 It7 Zty 9t7 0)
Z Ce + Ft(m;ta x:tv Ita Lt7 9t7 0)
o 8h(‘r;,a m:ta [ta Ltv Qt) 0)
Ovg_y
=0
= v;_; =0.
. Oh(x: kI ,z:,01,0) % . . ..
Since for z; < Ly, e <0 = wv;_; > 0. Therefore, the optimal capacity addition
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policy is

6.4 Theorem 4: Structure of optimal policy under unreliable

outsourcing

Proof of Theorem 4.

(’)T?((T/pt, xst 9 Its Zty et; ’Utfl)

or =Cp + L/ (It + le?t,) + a]Eﬁf,]EBt [Gu;fl(‘[t + Lp, + /thSt - gta Zt—1, 0t + 'Utfl)]
Pt

ar?(xpm Ts,s It-, Zt, Hta 7Jt—l)
Oxs,
8]‘—‘?(0 07 [tu Zt, gta /Ut—l)
O0xp,
811?(0 07 It; 2ty Ht; ’Utfl)
O0xs,

= Eg, [afics + afBEe, (G (I + Tp, + Bixs, — &y 201,01 +v4—1)]]

— Cp + L/ (It) + QE& [Gut_l(lt — §t’ Zt—1, 9,5 + /Ut—l)}

= py[acs + aBe, [G"y (I, — &, 21—1, 01 + v1-1))]

Let s1 and s respectively satisfy

COI'{ (0,0, 14, 2, 04, v6—1)

s1=inf{I o >0}
Pt
40,0, Iy, 2, 0, vy
s = inf(r TEOQ T2l 5

If s1 < s9, then let S}* = s9.

140



For I, > S},

8F;tu(mpt7xst7]ta 2t eta 7;t—].) > ar?(07 07 It» 2ty 91‘,7 ’()t—l)
3Ist - &rst

= py[acs + aBe, [G", (I, — &, 211,01 + v1-1))]
> piac, + aEe, [GY_y (SP — & 21,0 + vr-1)]]

=0

= x5, =0 for I; > Sy. Similarly, z;; =0 for I; > S}".
For I; < S},
xg, > 0 for I <S¢, since

81—‘?(0, :I:Sﬂltv 2ty etavtfl)
Oxs,

=g, [aBics + afEe, [Gu;fl(]t + Brxs, — & 21, 0 +vi—1)]]
=0
= —acsp = Eg,[aBiEe, [G" 1 (It + Brxs, — &, 201,00 + vi-1)]]

2 MtEm [aEEt [G“tfl(lt + Bt%t - §ta Zt—1, 0 + th)]]

The last inequality is due to the property [ ¢(z)y(z)f(z)dx > ([ ¢(x)f(x)dz)([ ¢ (z) f(x)dz).

= Eg,[afic] + aEg, [B:]Ee, [Gu;—1(1t + Brxs, — &t 21,0 +v4-1)] <0

BF?(OPQSSt)Ita 2ty etvvt—:l)

<0
Oxs,

= w;, >0
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oY (0,27, Ie,24,0¢,0¢—1)

Let B} satisfy o, = 0.

Then for By < I; < S,

aF?(II,“l’:t,Ih Zt, gt, ’Ut_l) > 8F?(O,x:t,lt, Zt, 6,5, Ut—l)

8171% 8xpt

= ¢y + L' (It) + aBe, [G",_y (I + Beat, — &, 21-1,0¢ + vi-1))]
> cp L (Bf') + aEe, [GU;A(B;L + Bewl, —&ey 21,08 +vp 1)

>0

*
— xptfo.

By definition of B}, we have that for I, < B}, z} ,z* > 0. So the optimal production and out-

pt? st

sourcing policies are characterized as:

(et—It7.’17:t), It < BZ"—gt

(l‘* xt ), B;‘—etSIt<B;‘L

(‘T;t ’ x:t) = " ”
(0,2%,), B <I, < S¥
(0,0), I > Sv

If s1 > s9. Let B = s1.
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For I; > B}

ary(xptaxsmlhzt, et: ’Utfl) > arg(o« 0; It7 2ty et7vt71)

6% 6gjm

=Cp + L/ (It) + Oé]Egt [Gu;fl(It - gt; Zt—1, 9,5 + ’Ut_]_)]
> ¢, + L' (BY') + B¢, [G",_1 (B} — &4, 20-1, 0, + v,-1))]

=0

= x,, =0 for Iy > By'. Similarly, z3, = 0 for I, > By
For I; < By,
x,, >0 for I; < By, since

arqtl(xpﬁo’ It: Zt, 9t7vt—1)

<0
O0xp,

wo
i (g, ,0,1t,2¢,0¢,0¢—1)

Ozs,

oY (x5, ,0,0,2¢,0¢,00-1) 0
0T p, -

. . 0 .
Let S} satisty = 0 where , satisfies

Then if S < I, < B,

LY (zy,, Tsys Ity 2t, 01, vt 1) < ol (zy,,0, Iy, 2, 01, vt 1)
0xs, - Oxs,
= Eg, [afics + afiEe, [Gu;—l(lt + a:;L — &y 2—1,0; +vi1)]]
> Egp, [aBics + aBiBe, [G*_1 (S¢ + a2, — &4, 201, 0 + ve—1)]]
—0
— 2z =0
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By definition of S}, we have that for I; < S}, x; ,z;, > 0. Based on relative position of B} — 6;

pt?s

the optimal production and outsourcing policies are characterized as:

If S < By — 0, < By, then

(Qt—It7$: ), It<Sg1

t

( ) (0, — 1,,0), S¢ < I < By -0,
x;t’x:t =

(3,:0), By —0, < I, < By

(0,0), I, > B}

If B} — 0, < S} < B}', then

(9t—It,x:t), I; <B#—9t

(z,,75,), By -0, <I, <S¢

% " pt? St
(zp,,75,) =
(:L‘;t,()), Sp < I, < By
(07O>a ]t 2 B#

We now derive the optimal capacity addition policy.

G (I, 2t,0¢) = Z.nfvt,IZO{ccvtfl +embr + F?(l“;”ﬂﬁ:t,[t, 24,01, v01) }

Define h(x;,, 3, It, 01, vi—1) = ccvs—i + ey + T (x5, , w8, I, 24, 0, vi—p). From Theorem 2 we have

that h is convex.

3h(x* $* It, Zt, 9,5, ’Ut,l)

pt? St

’
pr— el u /~* r~* y
81%71 - Cn+F t(lptaista[tvztaetaut—l)
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Oh(x) xt Ii,2¢,04,0)
pt?Usy
vy >— 0}

Let L} = inf{z :

Then for z; > L}

Pt St Dt

Ove_y - ey

Oh(ak [T, 2y, 0p,v0—1) >8h(a:* x} Iy, 2, 04,0)

= C¢ + Fu;(.’L';t,.'I?:t, It, 2ty et, O)
>c. + I‘“;(ac;t,x;, I, L}, 6,,0)

ah(x;t,a:* It7 L’#, Gt,O)

St

Ovi_y

=0

*
= v;_,; =0.

Oh(z}, o7, It,2:,04,0)

Since for z; < LY,

<0 = v;_;, > 0. Therefore, the optimal capacity addition

vy

policy is

>0, 2z <L¥

0, Zt 2 L?‘

6.5 Lemma 2: For supermodularity

Proof of Lemma 2. Denote the global optimum of g as g.



To show: For all 21 < 29 and 61 < 0,

H(29,01) + H(x1,02) < H(xq,601) + H(z2,62) (6.8)
g(x) increasing in , y<z

H(z,0) = g(y) constant, g<x+0 andz <y
g(z + 0) decreasing in x + 0, r+0<g

Claim: H(x1,02) < H(x1,67) for all z1,6, and 6 when 6; < 65 because
Case (a): g <1 = H(z1,02) = H(z1,61)

Case (b): § <x1+61 andz1 <y = H(x1,02) = H(x1,061)

Case (¢): 21 <9, 1+ 01 <gandx1 +03>7 — H(z1,03) < H(z1,61)

Case (d) T+ 09 < ’I) — H(ml,ﬂg) < H(azl,ﬁl)

When zo > ¢, H(z2,01) = H(x2,02) This implies that 6.8 holds.

When x5 < g, define a single-variable function

h(x+0) = H(z,6)

Note that h is convex. From Lemma 2.6.2 in Topkis (2011) we have that if a1,a2 € R", and g(y)
is convex, then f(z) = g(a12; + asxs) is supermodular in 2 € R, = H is supermodular
as it is defined as a single argument convex function h with its arguments as non-negative linear

combination. Od
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6.6 Lemma 3: For supermodularity

Proof of Lemma 3. Let 1 < xo and 21 < 29
Define y4 = argming>,, 9(y, z1) and yp = argming>,, g(y. 22).
Then we can write H(z1,21) = g(ya, 21) and H(x2,22) = g(yB, 22)

Now since

ya > 11 = yigjl 9(y, 22) = H(w1,22) < g(ya, z2)

and yp > vy = il g(y,21) = H(ws,21) < gyp, 21)
Yy=zx2

If y4 < yp, then by the supermodularity of g, we have that,

H (21, 29) + H(x2,21) < g(ya, 22) + 9(yB, z1)
S g(yA,Zl) +g(yB722)

= H(J)l, Zl) + H(J,‘Q, 2‘2)
Hence, H is supermodular.
If ya > yg, then ya,yp > 2

== ylilf g<y7zl) = H(‘TQ:zl) = g(yszl)
y>xo

and Uigf 9(y,22) = H(x1,22) < g(ym, 22)
Yy=xa
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Then we have that,

H(xg,21) + H(x1,22) < g(ya, z1) + 9(yB, 22)

= H(z1,21) + H(x2, 29)

Hence, H is supermodular.

6.7 Proposition 3: Optimal production quantity under par-

tial information on the probability distribution of wastage

Proof of Proposition 3. From equation (3.19) we can write,

dley + L(y)] _ ' y
T h/o TSV ES W (69)
1 1 y
*p/o (1+ g —An)0+ A1) <1 Cd(1+ (Mg — )0+ /\L)> d0
)

Solving this we get,

- In (HAH) —c
V= { | (6.10)
yd ),
(I+Am)(1+Ar) + (A —AL) In <1+)\IZ)
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6.8 Theorem 6: Convexity and supermodularity of G;(x,0, )\, 7)

Proof of Theorem 6. By Induction: Given capacity 6, we first find the optimal production policy

at(yvev )‘7 Z) = qb(yv )‘) + aEGt—l (f (y7£t7 >‘) 707 )‘7 Z)

Since G;_; is convex (by Induction Hypothesis) and ¢(y, A) is linear, so a; is convex.

Let S;(6, \) denote the unique minimizer over y € [0, 00). Therefore, the optimal production policy
is to get as close to S¢(6, A) as possible within [z, z + 6].

Since Gy—1 is supermodular in (x,0) (by Induction Hypothesis), so is a; and therefore Si(f, \) is
decreasing in 6.

Since the cost function is linear (convex function) and {(x,y,0) : x> 0,0< 0 < Z,x <y < x+6}is
a convex set, hence it is straightforward from the convexity preservation theorem under minimization
that T'¢(x,0, A, Z) and G¢(z, 0, A, Z) are (jointly) convex in (x,0).

To show: I'y is supermodular

a(x,0,\, 2) Se(0,\) < x
Pe(@,0,0.2) = 4 0,(5,(0,1),0,\, Z) 2 <S(0,\) <x+86 (6.11)
a(z+6,0,\,2) x40 <S50,
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Partial derivative wrt x,

V(@ +0,0,7,2)  x< 8,0, \andd < Sy(0,)\) —x

1
1Y (2,60,),2) = < z < S4(0, Nandf > Sy(0,)) — x (6.12)

alV (2,0, 2) x> S(6,))

To show: Fil)(x, 0, )\, Z) is increasing in 6. We know that, a;(S;(0,A),0, A, Z) = 0.

When 2 and z+6 < S,(0,\) = a'(2+6,0,A,2) <0. When z > S,(0,\) = a\"(2,0,),2) >
0. Hence, F,El)(x,e, A, Z) is increasing in §# = T is supermodular.

Since, Gy is convex and g4(x,0, A, Z) = ¢c.0 + Ty (x,0,\, Z). Let Ly(x, Z) be the minimizer of g; over

0 € [0, Z]. Since g; is supermodular, L;(x, Z) is decreasing in x.

—cpt — ¢+ ccLy(x, Z) + Tz, Li(z, Z), N\, Z) 0 < Li(x,7)
Gi(z,0,\,Z) = (6.13)

—cpr + Ty (2,0, 2Z) 0> Li(x, 7)

—cpx +co(Le(x, Z) — 0) + Ty (x, Le(x, Z), A, Z) 0 < Li(z,2)
= (6.14)

—cpcc—l—Ft(x,Q,)\,Z) 0>Lt(x,Z)

—Ce 0 < Li(x,2)
GV(z,0,)\,2) = (6.15)

M (2,0.0,2) 0> Li(z,2)

To show: G is supermodular, that is, Ggl) is increasing in z for each fixed 6.
When 0 > Li(z,Z) , Ggl)(w,e, A, Z) increases in z. Since T't(z,0,\, Z) is supermodular, so
Fgl)(x,ﬁ, A, Z) increases in x.

Hence, G; is supermodular in (z,0). O
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6.9 Theorem 7: G,(z,0|)\) increases in A

Proof of Theorem 7. Let S5 (v|A) and L7 (x|A) be optimal levels of production and capacity for given
A. We prove that G¢(x,0|)\) increases in A through induction on ¢. We first show that G;(z,0|\)

increases in \. Pick a pair of values such that Ay > A;.

Gi(x,0|M) = Zi>111]f>0{—cpa: —ch+ gi(x,v,Z|\)}
< —cpr — ¢l + g1 (ST (v|A2), LT (z|X2), Z| A1)
= —cpt — cc0 + c.Li (x| A2) + ¢ 57 (v]A2) + L(ST (v|A2), A2 A1)

< —cpx — b + cc Ly (x| A2) 4+ ¢pST (v]A2) + L(ST (v]|A2), A2] A2)

= G1($,9|)\2) (616)

The first inequality is due to the fact that Sy (v|A\g) and L (z|\2) are suboptimal pair of inventory
and capacity when A = A;. The second inequality is due to the fact that the holding and shortage

cost function L(z, \) is increasing in .
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Suppose Gy (z,0|A) is increasing in A for k =1,2,...,¢t — 1. Then

Gi(x,0]\1) = Zizgfzg{—cpﬂf — ¢l + ge(x,v, Z| A1)}
< —cpr — e + g1(S7 (v|A2), L (2[A2), Z|A1)
= ce(Li (#[A2) = 0) + ¢ (S (v[A2) — @) + L(SF (v[A2), A2 A1)
+ aBG—1(f(Sf (v[A2), & A1), Li (z[A2), Z| A1)
< ce(Li (2[A2) = 0) + ¢ (S (v]A2) — ) + L(S{ (v[A2), A2| A1)
+ aBGi—1(f(S{ (v[A2), &, A1), Li (z[A2), Z[A2)
< ce(Li (z[A2) = 0) + cp (7 (v[A2) — @) + LS} (v[Az), Az[A2)
+ aEG -1 (f(Sf (v[A2), &, A1), Li (2] A2), Z|A2)

= Gy(z,0])2) (6.17)

The first inequality is because S} (v|\2) and L; (z|A2) are suboptimal pair of inventory and capacity
when A = A;. The second inequality is due to induction hypothesis. The last inequality is because

L(x, ) is increasing in . O
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